Skip to main content

A Comparative Evaluation of Machine Learning Architectures for Detecting Attacks on Smart Meter Data

  • Conference paper
  • First Online:
Proceedings of the International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI 2024) (UCAmI 2024)

Abstract

Companies in the electrical sector are responsible for the production, transport, distribution, and management of thousands or even millions of simultaneous users. Smart meters have improved user consumption monitoring by enabling the automatic collection of data. However, they also increase the risk of data tampering. This paper proposes detection methods for various subtle attack types aimed at reducing apparent consumption and monthly bills through illicit actions, such as altering consumption values before they are sent to the company. The proposal only relies on energy consumption time series (without assuming the availability of personal and socioeconomic data). On this data, a multiclass detector based on XGBoost is compared in performance with two variants of a two-stage detection architecture, which first apply either a classifier or a clustering method (K-Means) to rate the presence of any type of attack, to then perform attack type identification in a second stage. Detection rates exceeding 80% with a low false positive rate were achieved using the two-stage clustering plus classification detector on the subtle collection of attacks proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “SmartMeter Energy Consumption Data in London Households – London Datastore.” https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households.

  2. 2.

    “Smart meters in London,” Kaggle, May 23, 2022. https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london?rvi=1.

  3. 3.

    “Low Carbon London - UKPN Innovation,” UKPN Innovation, Oct. 27, 2023. https://innovation.ukpowernetworks.co.uk/projects/low-carbon-london.

References

  1. Barai, G.R., Krishnan, S., Venkatesh, B.: Smart metering and functionalities of smart meters in smart grid - a review. In: 2015 IEEE Electrical Power and Energy Conference (EPEC), London, ON, Canada, pp. 138–145 (2015).https://doi.org/10.1109/EPEC.2015.7379940

  2. Yuan, R., Pourmousavi, S.A., Soong, W.L., Black, A.J., Liisberg, J.A.R., Lemos-Vinasco, J.: Unleashing the benefits of smart grids by overcoming the challenges associated with low-resolution data. Cell Rep. Phys. Sci. 5(2), 101830 (2024). https://doi.org/10.1016/j.xcrp.2024.101830

    Article  Google Scholar 

  3. Zeinali, M., Thompson, J.S.: Impact of compression and aggregation in wireless networks on smart meter data. In: 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Edinburgh, UK, pp. 1–5 (2016). https://doi.org/10.1109/SPAWC.2016.7536742

  4. Lo, C.-H., Ansari, N.: CONSUMER: a novel hybrid intrusion detection system for distribution networks in smart grid. IEEE Trans. Emerg. Top. Comput. 1(1), 33–44 (2013). https://doi.org/10.1109/TETC.2013.2274043

    Article  Google Scholar 

  5. Ganguly, P., Nasipuri, M., Dutta, S.: A novel approach for detecting and mitigating the energy theft issues in the smart metering infrastructure. Technol. Econ. Smart Grids Sustain. Energy 3(1) (2018). https://doi.org/10.1007/s40866-018-0053-x

  6. Ahmad, T.: Non-technical loss analysis and prevention using smart meters. Renew. Sustain. Energy Rev. 72, 573–589 (2017). https://doi.org/10.1016/j.rser.2017.01.100

    Article  Google Scholar 

  7. Raggi, L.M.R., Trindade, F.C.L., Cunha, V.C., Freitas, W.: Non-technical loss identification by using data analytics and customer smart meters. IEEE Trans. Power Delivery 35(6), 2700–2710 (2020). https://doi.org/10.1109/TPWRD.2020.2974132

    Article  Google Scholar 

  8. Wang, W., et al.: Analysis of Technical Losses in Hubei Power Grid. In: 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, pp. 1–5 (2021).https://doi.org/10.1109/CIEEC50170.2021.9510450

  9. Carr, D., Thomson, M.: Non-Technical electricity losses. Energies 15(6), 2218 (2022). https://doi.org/10.3390/en15062218

    Article  Google Scholar 

  10. Smith, T.B.: Electricity theft: a comparative analysis. Energy Policy 32(18), 2067–2076 (2004). https://doi.org/10.1016/s0301-4215(03)00182-4

    Article  Google Scholar 

  11. Cui, L., Qu, Y., Gao, L., Xie, G., Yu, S.: Detecting false data attacks using machine learning techniques in smart grid: a survey. J. Netw. Comput. Appl. 170, 102808 (2020). https://doi.org/10.1016/j.jnca.2020.102808

    Article  Google Scholar 

  12. Messinis, G.M., Rigas, A.E., Hatziargyriou, N.D.: A hybrid method for non-technical loss detection in smart distribution grids. IEEE Trans. Smart Grid 10(6), 6080–6091 (2019). https://doi.org/10.1109/TSG.2019.2896381

    Article  Google Scholar 

  13. De Nadai, M., van Someren, M.: Short-term anomaly detection in gas consumption through ARIMA and Artificial Neural Network forecast. In: 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings, Trento, Italy, pp. 250–255 (2015).https://doi.org/10.1109/EESMS.2015.7175886

  14. Sun, M., Konstantelos, I., Strbac, G.: C-Vine copula mixture model for clustering of residential electrical load pattern data. IEEE Trans. Power Syst. 32(3), 2382–2393 (2017). https://doi.org/10.1109/TPWRS.2016.2614366

    Article  Google Scholar 

  15. Kawoosa, A.I., Prashar, D., Faheem, M., Jha, N., Khan, A.A.: Using machine learning ensemble method for detection of energy theft in smart meters. IET Gener. Transm. Distrib. 17(21), 4794–4809 (2023). https://doi.org/10.1049/gtd2.12997

    Article  Google Scholar 

  16. Abraham, O.A., Ochiai, H., Hossain, M.D., Taenaka, Y., Kadobayashi, Y.: Electricity theft detection for smart homes with knowledge-based synthetic attack data. In: 2023 IEEE 19th International Conference on Factory Communication Systems (WFCS), Pavia, Italy, pp. 1–8 (2023). https://doi.org/10.1109/WFCS57264.2023.10144120

  17. Moure-Garrido, M., Campo, C., Garcia-Rubio, C.: Entropy-Based anomaly detection in household electricity consumption. Energies 15(5), 1837 (2022). https://doi.org/10.3390/en15051837

    Article  Google Scholar 

  18. Yao, D., Wen, M., Liang, X., Fu, Z., Zhang, K., Yang, B.: Energy theft detection with energy privacy preservation in the smart grid. IEEE Internet Things J. 6(5), 7659–7669 (2019). https://doi.org/10.1109/JIOT.2019.2903312

    Article  Google Scholar 

  19. Dayaratne, T., Salehi, M., Rudolph, C., Liebman, A.: False data injection attack detection for secure distributed demand response in smart grids. In: 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Baltimore, MD, USA, pp. 367–380 (2022). https://doi.org/10.1109/DSN53405.2022.00045

  20. Quinde, S., Rengifo, J., Vaca-Urbano, F.: Non-technical loss detection using data mining algorithms. In: 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, pp. 1–5 (2021). https://doi.org/10.1109/ISGTLatinAmerica52371.2021.9543024

  21. Viegas, J.L., Esteves, P.R., Vieira, S.M.: Clustering-based novelty detection for identification of non-technical losses. Int. J. Electr. Power Energy Syst. 101, 301–310 (2018). https://doi.org/10.1016/j.ijepes.2018.03.031

    Article  Google Scholar 

  22. Li, S., Han, Y., Yao, X., Yingchen, S., Wang, J., Zhao, Q.: Electricity theft detection in power grids with deep learning and random forests. J. Electr. Comput. Eng. 2019, 1–12 (2019). https://doi.org/10.1155/2019/4136874

    Article  Google Scholar 

  23. Paparrizos, J., Gravano, L.: K-Shape: efficient and accurate clustering of time series. SIGMOD Record 45(1), 69–76 (2016). https://doi.org/10.1145/2949741.2949758

    Article  Google Scholar 

  24. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978). https://doi.org/10.1109/TASSP.1978.1163055

    Article  Google Scholar 

  25. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005). https://doi.org/10.1007/s10115-004-0154-9

    Article  Google Scholar 

  26. Monedero, I., Biscarri, F., León, C., Guerrero, J.I., Biscarri, J., Millán, R.: Detection of frauds and other non-technical losses in a power utility using Pearson coefficient, Bayesian networks and decision trees. Int. J. Electr. Power Energy Syst. Electr. Power Energy Syst. 34(1), 90–98 (2012). https://doi.org/10.1016/j.ijepes.2011.09.009

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge funding under grant MIA.2021.M04.0008 by the Spanish Ministry of Economic Affairs and Digital Transformation and by EU Next Generation EU/PRTR programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Bernardos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gallego, C.J., Bernardos, A.M., Casar, J.R. (2024). A Comparative Evaluation of Machine Learning Architectures for Detecting Attacks on Smart Meter Data. In: Bravo, J., Nugent, C., Cleland, I. (eds) Proceedings of the International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI 2024). UCAmI 2024. Lecture Notes in Networks and Systems, vol 1212. Springer, Cham. https://doi.org/10.1007/978-3-031-77571-0_78

Download citation

Publish with us

Policies and ethics