Skip to main content

Judicial Support Tool: Finding the k Most Likely Judicial Worlds

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15350))

Included in the following conference series:

  • 136 Accesses

Abstract

Judges sometimes make mistakes. We propose JUST, a logical framework within which judges can record propositions about a case and witness statements where a witness says that certain propositions are true or false. JUST allows the judge (or a jury) to assign a rating of credibility to witness statements. A world is an assignment of true/false to each proposition, which is required to satisfy case-specific integrity constraints. We first develop JUST ’s explicit algorithm, which calculates the k most likely worlds without using independence assumptions between propositions. The judge may use these calculated top-k most likely worlds to make her final decision. For this computation, JUST  uses a suite of “combination” functions. We also develop JUST ’s implicit algorithm, which is far more efficient. We test JUST on 5 real-world court cases and 19 TV court cases, showing that JUST works well in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.sentencingproject.org/publications/un-report-on-racial-disparities/.

  2. 2.

    https://en.wikipedia.org/wiki/Death_of_Caylee_Anthony.

  3. 3.

    A probability distribution over \({\textsf{PW}}\) is a function \({\rho }_{\textsf{IC}}:{\textsf{PW}}\rightarrow [0,1]\) s.t. \(\Sigma _{{\gamma }\in {\textsf{PW}}}\ {\rho }_{\textsf{IC}}({\gamma })=1\).

References

  1. Bagherian-Marandi, N., Ravanshadnia, M., Akbarzadeh-T, M.R.: Two-layered fuzzy logic-based model for predicting court decisions in construction contract disputes. Artif. Intell. Law 29(4), 453–484 (2021)

    Article  Google Scholar 

  2. Benferhat, S., Chehire, T., Monai, F.: Possibilistic ATMS in a data fusion problem. In: Wiley, J., Sons (eds.) Publié In Fuzzy Set Methods in Information Engineering: A Guided Tour of Applications, pp. 417–435 (1998)

    Google Scholar 

  3. van Benthem, J., Fernández-Duque, D., Pacuit, E.: Evidence logic: a new look at neighborhood structures. In: Proceedings Advances in Modal Logic, pp. 97–118 (2012)

    Google Scholar 

  4. Brägger, R.P., Dudler, A., Rebsamen, J., Zehnder, C.A.: Gambit: an interactive database design tool for data structures, integrity constraints, and transactions. IEEE Trans. Software Eng. 11(7), 574–583 (1985)

    Article  Google Scholar 

  5. Deeks, A.: The judicial demand for explainable artificial intelligence. Columbia Law Rev. 119(7), 1829–1850 (2019)

    Google Scholar 

  6. Dubois, D., Prade, H.: A class of fuzzy measures based on triangular norms a general framework for the combination of uncertain information. Int. J. Gen. Syst. 8(1), 43–61 (1982)

    Article  MathSciNet  Google Scholar 

  7. Fornaciari, T., Poesio, M.: Automatic deception detection in Italian court cases. Artif. Intell. Law 21(3), 303–340 (2013)

    Article  Google Scholar 

  8. Jøsang, A., Bondi, V.A.: Legal reasoning with subjective logic. Artif. Intell. Law 8(4), 289–315 (2000)

    Article  Google Scholar 

  9. Karamlou, A., Cyras, K., Toni, F.: Deciding the winner of a debate using bipolar argumentation. In: Proceedings of AAMAS, pp. 2366–2368 (2019)

    Google Scholar 

  10. Kowalski, R., Datoo, A.: Logical english meets legal english for swaps and derivatives. Artif. Intell. Law 30(2), 163–197 (2021)

    Article  Google Scholar 

  11. Kowalski, R.A.: Legislation as logic programs. In: Informatics and the Foundations of Legal Reasoning, pp. 325–356 (1995)

    Google Scholar 

  12. Lakshmanan, L.V.S., Leone, N., Ross, R.B., Subrahmanian, V.S.: Probview: a flexible probabilistic database system. ACM Trans. Database Syst. 22(3), 419–469 (1997)

    Article  Google Scholar 

  13. van Leeuwen, L., Verheij, B.: A comparison of two hybrid methods for analyzing evidential reasoning. Front. Artif. Intell. Appl. 322, 53–62 (2019)

    Google Scholar 

  14. Leith, P.: The judge and the computer: how best ‘decision support’? Artif. Intell. Law 6(2), 289–309 (1998)

    Article  Google Scholar 

  15. Liu, F., Lorini, E.: Reasoning about belief, evidence and trust in a multi-agent setting. In: Proceedings of PRIMA, vol. 10621, pp. 71–89 (2017)

    Google Scholar 

  16. Lovász, L., Vempala, S.S.: Hit-and-run from a corner. SIAM J. Comput. 35(4), 985–1005 (2006)

    Article  MathSciNet  Google Scholar 

  17. Medvedeva, M., Vols, M., Wieling, M.: Using machine learning to predict decisions of the European court of human rights. Artif. Intell. Law 28(2), 237–266 (2020)

    Article  Google Scholar 

  18. Mokanov, I., Shane, D., Cerat, B.: Facts2law: using deep learning to provide a legal qualification to a set of facts. In: Proceedings of ICAIL, pp. 268–269 (2019)

    Google Scholar 

  19. Parmar, M., et al.: Logicbench: towards systematic evaluation of logical reasoning ability of large language models. In: Proceedings of ACL, pp. 13679–13707 (2024)

    Google Scholar 

  20. Pérez-Rosas, V., Abouelenien, M., Mihalcea, R., Burzo, M.: Deception detection using real-life trial data. In: Proceedings of ICMI, pp. 59–66 (2015)

    Google Scholar 

  21. Rose, D.E.: A Symbolic and Connectionist Approach to Legal Information Retrieval. Psychology Press, London (2013)

    Book  Google Scholar 

  22. Schild, U.J.: Criminal sentencing and intelligent decision support. Artif. Intell. Law 6(2), 151–202 (1998)

    Article  Google Scholar 

  23. Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Oper. Res. 32(6), 1296–1308 (1984)

    Article  MathSciNet  Google Scholar 

  24. Van Opdorp, G., Walker, R., Schrickx, J., Groendijk, C., Van den Berg, P.: Networks at work: a connectionist approach to non-deductive legal reasoning. In: Proceedings of the 3rd International Conference on Artificial Intelligence and Law, pp. 278–287 (1991)

    Google Scholar 

  25. Wah, T.K., Muniandy, M.: Courtroom decision support system using case based reasoning. Procedia. Soc. Behav. Sci. 129, 489–495 (2014)

    Article  Google Scholar 

  26. Walsh, K., Hussemann, J., Flynn, A., Yahner, J., Golian, L.: Estimating the prevalence of wrongful convictions (2017). https://www.ojp.gov/pdffiles1/nij/grants/251115.pdf

  27. Wu, Z., Singh, B., Davis, L.S., Subrahmanian, V.S.: Deception detection in videos. In: Proceedings of AAAI, pp. 1695–1702 (2018)

    Google Scholar 

Download references

Acknowledgement

Cristian Molinaro acknowledges the support of the PNRR project FAIR - Future AI Research (PE00000013), Spoke 9 - Green-aware AI, under the NRRP MUR program funded by the NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Molinaro .

Editor information

Editors and Affiliations

Ethics declarations

Contributions

The authors are listed in alphabetical order, not by magnitude of contribution.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bolonkin, M., Chakrabarty, S., Molinaro, C., Subrahmanian, V.S. (2025). Judicial Support Tool: Finding the k Most Likely Judicial Worlds. In: Destercke, S., Martinez, M.V., Sanfilippo, G. (eds) Scalable Uncertainty Management. SUM 2024. Lecture Notes in Computer Science(), vol 15350. Springer, Cham. https://doi.org/10.1007/978-3-031-76235-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76235-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76234-5

  • Online ISBN: 978-3-031-76235-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics