Abstract
Existing datasets for 3D hand-object interaction are limited either in the data cardinality, data variations in interaction scenarios, or the quality of annotations. In this work, we present a comprehensive new training dataset for hand-object interaction called HOGraspNet. It is the only real dataset that captures full grasp taxonomies, providing grasp annotation and wide intraclass variations. Using grasp taxonomies as atomic actions, their space and time combinatorial can represent complex hand activities around objects. We select 22 rigid objects from the YCB dataset and 8 other compound objects using shape and size taxonomies, ensuring coverage of all hand grasp configurations. The dataset includes diverse hand shapes from 99 participants aged 10 to 74, continuous video frames, and a 1.5M RGB-Depth of sparse frames with annotations. It offers labels for 3D hand and object meshes, 3D keypoints, contact maps, and grasp labels. Accurate hand and object 3D meshes are obtained by fitting the hand parametric model (MANO) and the hand implicit function (HALO) to multi-view RGBD frames, with the MoCap system only for objects. Note that HALO fitting does not require any parameter tuning, enabling scalability to the dataset’s size with comparable accuracy to MANO. We evaluate HOGraspNet on relevant tasks: grasp classification and 3D hand pose estimation. The result shows performance variations based on grasp type and object class, indicating the potential importance of the interaction space captured by our dataset. The provided data aims at learning universal shape priors or foundation models for 3D hand-object interaction. Our dataset and code are available at https://hograspnet2024.github.io/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arapi, V., Della Santina, C., Averta, G., Bicchi, A., Bianchi, M.: Understanding human manipulation with the environment: a novel taxonomy for video labelling. IEEE Robot. Autom. Lett. 6(4), 6537–6544 (2021)
Bhatnagar, B.L., Xie, X., Petrov, I., Sminchisescu, C., Theobalt, C., Pons-Moll, G.: Behave: dataset and method for tracking human object interactions. In: CVPR (2022)
Brahmbhatt, S., Ham, C., Kemp, C.C., Hays, J.: ContactDB: analyzing and predicting grasp contact via thermal imaging. In: CVPR (2019)
Brahmbhatt, S., Tang, C., Twigg, C.D., Kemp, C.C., Hays, J.: ContactPose: a dataset of grasps with object contact and hand pose. In: ECCV (2020)
Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: The YCB object and model set: towards common benchmarks for manipulation research. In: ICAR (2015)
Cao, Z., Radosavovic, I., Kanazawa, A., Malik, J.: Reconstructing hand-object interactions in the wild. In: ICCV (2021)
Caramalau, R., Bhattarai, B., Kim, T.K.: Active learning for Bayesian 3D hand pose estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3419–3428 (2021)
Chao, Y.W., et al.: DexYCB: a benchmark for capturing hand grasping of objects. In: CVPR (2021)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Chen, Y., et al.: Joint hand-object 3D reconstruction from a single image with cross-branch feature fusion. TIP (2021)
Chen, Z., Chen, S., Schmid, C., Laptev, I.: gSDF: geometry-driven signed distance functions for 3D hand-object reconstruction. In: CVPR (2023)
Chen, Z., Hasson, Y., Schmid, C., Laptev, I.: AlignSDF: pose-aligned signed distance fields for hand-object reconstruction. In: ECCV (2022)
Cho, W., Park, G., Woo, W.: Tracking an object-grabbing hand using occluded depth reconstruction. In: ISMAR-Adjunct (2018)
Cho, W., Park, G., Woo, W.: Bare-hand depth inpainting for 3D tracking of hand interacting with object. In: ISMAR (2020)
Cini, F., Ortenzi, V., Corke, P., Controzzi, M.: On the choice of grasp type and location when handing over an object. Sci. Robot. 4(27), eaau9757 (2019)
Corona, E., Pumarola, A., Alenya, G., Moreno-Noguer, F., Rogez, G.: Ganhand: predicting human grasp affordances in multi-object scenes. In: CVPR (2020)
Damen, D., et al.: Rescaling egocentric vision: collection, pipeline and challenges for epic-kitchens-100. IJCV (2022)
Doosti, B., Naha, S., Mirbagheri, M., Crandall, D.J.: Hope-net: a graph-based model for hand-object pose estimation. In: CVPR (2020)
Fan, Z., et al.: ARCTIC: a dataset for dexterous bimanual hand-object manipulation. In: CVPR (2023)
Feix, T., Romero, J., Schmiedmayer, H.B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. Hum.-Mach. Syst. 46(1), 66–77 (2015)
Fieraru, M., Zanfir, M., Oneata, E., Popa, A.I., Olaru, V., Sminchisescu, C.: Three-dimensional reconstruction of human interactions. In: CVPR (2020)
Fu, Q., Liu, X., Xu, R., Niebles, J.C., Kitani, K.M.: Deformer: dynamic fusion transformer for robust hand pose estimation. arXiv preprint arXiv:2303.04991 (2023)
Garcia-Hernando, G., Johns, E., Kim, T.K.: Physics-based dexterous manipulations with estimated hand poses and residual reinforcement learning. In: IROS (2020)
Garcia-Hernando, G., Yuan, S., Baek, S., Kim, T.K.: First-person hand action benchmark with RGB-D videos and 3d hand pose annotations. In: CVPR (2018)
Gomez-Donoso, F., Orts-Escolano, S., Cazorla, M.: Large-scale multiview 3D hand pose dataset. IVC (2019)
Goyal, M., Modi, S., Goyal, R., Gupta, S.: Human hands as probes for interactive object understanding. In: CVPR (2022)
Grady, P., Tang, C., Twigg, C.D., Vo, M., Brahmbhatt, S., Kemp, C.C.: ContactOpt: optimizing contact to improve grasps. In: CVPR (2021)
Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: Honnotate: a method for 3D annotation of hand and object poses. In: CVPR (2020)
Hampali, S., Sarkar, S.D., Rad, M., Lepetit, V.: Keypoint transformer: solving joint identification in challenging hands and object interactions for accurate 3d pose estimation. In: CVPR (2022)
Hassan, M., Choutas, V., Tzionas, D., Black, M.J.: Resolving 3D human pose ambiguities with 3D scene constraints. In: ICCV (2019)
Hasson, Y., Tekin, B., Bogo, F., Laptev, I., Pollefeys, M., Schmid, C.: Leveraging photometric consistency over time for sparsely supervised hand-object reconstruction. In: CVPR (2020)
Hasson, Y., Varol, G., Schmid, C., Laptev, I.: Towards unconstrained joint hand-object reconstruction from RGB videos. In: 3DV (2021)
Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11807–11816 (2019)
Hu, H., Yi, X., Zhang, H., Yong, J.H., Xu, F.: Physical interaction: reconstructing hand-object interactions with physics. In: SIGGRAPH Asia (2022)
Huang, C.H.P., et al.: Capturing and inferring dense full-body human-scene contact. In: CVPR (2022)
Huang, Y., Taheri, O., Black, M.J., Tzionas, D.: InterCap: joint markerless 3D tracking of humans and objects in interaction from multi-view RGB-D images. IJCV (2024)
Jiang, N., et al.: Full-body articulated human-object interaction. In: ICCV (2023)
Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: ICCV (2015)
Joo, H., Neverova, N., Vedaldi, A.: Exemplar fine-tuning for 3D human pose fitting towards in-the-wild 3D human pose estimation. In: 3DV (2020)
Karunratanakul, K., Spurr, A., Fan, Z., Hilliges, O., Tang, S.: A skeleton-driven neural occupancy representation for articulated hands. In: 3DV (2021)
Kwon, T., Tekin, B., Stühmer, J., Bogo, F., Pollefeys, M.: H2O: two hands manipulating objects for first person interaction recognition. In: ICCV (2021)
Lee, J., Saito, S., Nam, G., Sung, M., Kim, T.K.: InterHandGen: two-hand interaction generation via cascaded reverse diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 527–537 (2024)
Lee, J., Sung, M., Choi, H., Kim, T.K.: Im2hands: learning attentive implicit representation of interacting two-hand shapes. In: CVPR (2023)
Leroy, V., Weinzaepfel, P., Brégier, R., Combaluzier, H., Rogez, G.: SMPLy benchmarking 3D human pose estimation in the wild. In: 3DV (2020)
Li, M., et al.: Interacting attention graph for single image two-hand reconstruction. In: CVPR (2022)
Lin, K., Wang, L., Liu, Z.: Mesh graphormer. In: ICCV (2021)
Lin, P., et al.: HandDiffuse: generative controllers for two-hand interactions via diffusion models. In: CoRR, vol. abs/2312.04867 (2023)
Lin, Z., Ding, C., Yao, H., Kuang, Z., Huang, S.: Harmonious feature learning for interactive hand-object pose estimation. In: CVPR (2023)
Liu, J., Feng, F., Nakamura, Y.C., Pollard, N.S.: A taxonomy of everyday grasps in action. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 573–580. IEEE (2014)
Liu, S., Jiang, H., Xu, J., Liu, S., Wang, X.: Semi-supervised 3D hand-object poses estimation with interactions in time. In: CVPR (2021)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM TOG (2015)
Lugaresi, C., et al.: MediaPipe: a framework for building perception pipelines. arXiv preprint arXiv:1906.08172 (2019)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (2008)
Mehta, D., et al.: Single-shot multi-person 3D pose estimation from monocular RGB. In: 3DV (2018)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)
Moon, G., et al.: A dataset of relighted 3d interacting hands. In: NeurIPS (2024)
Moon, G., Yu, S.I., Wen, H., Shiratori, T., Lee, K.M.: InterHand2.6M: a dataset and baseline for 3D interacting hand pose estimation from a single RGB image. In: ECCV (2020)
Mueller, F., Mehta, D., Sotnychenko, O., Sridhar, S., Casas, D., Theobalt, C.: Real-time hand tracking under occlusion from an egocentric RGB-D sensor. In: ICCV (2017)
Park, G., Kim, T.K., Woo, W.: 3D hand pose estimation with a single infrared camera via domain transfer learning. In: ISMAR (2020)
Patel, P., Huang, C.H.P., Tesch, J., Hoffmann, D.T., Tripathi, S., Black, M.J.: AGORA: avatars in geography optimized for regression analysis. In: CVPR (2021)
Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR (2019)
Pavlakos, G., Shan, D., Radosavovic, I., Kanazawa, A., Fouhey, D., Malik, J.: Reconstructing hands in 3D with transformers. In: CVPR (2024)
Pumarola, A., Sanchez, J., Choi, G., Sanfeliu, A., Moreno-Noguer, F.: 3DPeople: modeling the geometry of dressed humans. In: ICCV (2019)
Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth. In: CVPR (2014)
Qu, W., et al.: Novel-view synthesis and pose estimation for hand-object interaction from sparse views. In: ICCV (2023)
Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM TOG (2017)
Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using multiview bootstrapping. In: CVPR (2017)
Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand motion tracking using RGB and depth data. In: ICCV (2013)
Stival, F., Michieletto, S., Cognolato, M., Pagello, E., Müller, H., Atzori, M.: A quantitative taxonomy of human hand grasps. J. Neuroeng. Rehabil. 16, 1–17 (2019)
Sun, Y., Liu, W., Bao, Q., Fu, Y., Mei, T., Black, M.J.: Putting people in their place: monocular regression of 3D people in depth. In: CVPR (2022)
Swamy, A., et al.: SHOWMe: benchmarking object-agnostic hand-object 3D reconstruction. In: ICCV (2023)
Taheri, O., Ghorbani, N., Black, M.J., Tzionas, D.: Grab: a dataset of whole-body human grasping of objects. In: ECCV 2020 (2020)
Tang, D., Jin Chang, H., Tejani, A., Kim, T.K.: Latent regression forest: structured estimation of 3D articulated hand posture. In: CVPR (2014)
Tekin, B., Bogo, F., Pollefeys, M.: H+O: unified egocentric recognition of 3D hand-object poses and interactions. In: CVPR (2019)
Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery of human hands using convolutional networks. ACM TOG (2014)
Tse, T.H.E., Zhang, Z., Kim, K.I., Leonardis, A., Zheng, F., Chang, H.J.: S2 contact: graph-based network for 3D hand-object contact estimation with semi-supervised learning. In: ECCV (2022)
Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.: Capturing hands in action using discriminative salient points and physics simulation. IJCV (2016)
Wang, J., et al.: RGB2Hands: real-time tracking of 3D hand interactions from monocular RGB video. ACM TOG (2020)
Wen, G., Xiaoyu, B., Xavier, A.P., Francesc, M.N.: Multi-person extreme motion prediction. In: CVPR (2022)
Xu, C., Cheng, L.: Efficient hand pose estimation from a single depth image. In: ICCV (2013)
Xu, H., Wang, T., Tang, X., Fu, C.W.: H2ONet: hand-occlusion-and-orientation-aware network for real-time 3D hand mesh reconstruction. In: CVPR (2023)
Yang, L., et al.: OakInk: a large-scale knowledge repository for understanding hand-object interaction. In: CVPR (2022)
Yang, L., Zhan, X., Li, K., Xu, W., Li, J., Lu, C.: CPF: learning a contact potential field to model the hand-object interaction. In: ICCV (2021)
Yin, Y., Guo, C., Kaufmann, M., Zarate, J., Song, J., Hilliges, O.: Hi4D: 4D instance segmentation of close human interaction. In: CVPR (2023)
Yu, Z., Yang, L., Chen, S., Yao, A.: Local and global point cloud reconstruction for 3D hand pose estimation. In: BMVC (2021)
Yuan, S., Ye, Q., Stenger, B., Jain, S., Kim, T.K.: BigHand2.2M benchmark: hand pose dataset and state of the art analysis. In: CVPR (2017)
Zhang, B., et al.: Interacting two-hand 3D pose and shape reconstruction from single color image. In: ICCV (2021)
Zhang, J., Jiao, J., Chen, M., Qu, L., Xu, X., Yang, Q.: 3D hand pose tracking and estimation using stereo matching. In: ICIP (2017)
Zhang, S., et al.: EgoBody: human body shape and motion of interacting people from head-mounted devices. In: ECCV (2022)
Zhang, X., et al.: Hand image understanding via deep multi-task learning. In: ICCV (2021)
Zheng, X., Wen, C., Xue, Z., Ren, P., Wang, J.: HaMuCo: hand pose estimation via multiview collaborative self-supervised learning. In: ICCV (2023)
Zheng, Y., et al.: Deepmulticap: performance capture of multiple characters using sparse multiview cameras. In: ICCV (2021)
Zimmermann, C., Argus, M., Brox, T.: Contrastive representation learning for hand shape estimation. In: GCPR (2021)
Zimmermann, C., Brox, T.: Learning to estimate 3D hand pose from single RGB images. In: ICCV (2017)
Zimmermann, C., Ceylan, D., Yang, J., Russell, B., Argus, M., Brox, T.: FreiHAND: a dataset for markerless capture of hand pose and shape from single RGB images. In: ICCV (2019)
Zuo, B., Zhao, Z., Sun, W., Xie, W., Xue, Z., Wang, Y.: Reconstructing interacting hands with interaction prior from monocular images. In: ICCV (2023)
Acknowledgement
This work was in part sponsored by NST grant (CRC 21011, MSIT), IITP grant (No. 2019-0-01270 and RS-2023-00228996, MSIT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cho, W. et al. (2025). Dense Hand-Object (HO) GraspNet with Full Grasping Taxonomy and Dynamics. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15140. Springer, Cham. https://doi.org/10.1007/978-3-031-73007-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-73007-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73006-1
Online ISBN: 978-3-031-73007-8
eBook Packages: Computer ScienceComputer Science (R0)