Skip to main content

Dense Hand-Object (HO) GraspNet with Full Grasping Taxonomy and Dynamics

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15140))

Included in the following conference series:

  • 343 Accesses

Abstract

Existing datasets for 3D hand-object interaction are limited either in the data cardinality, data variations in interaction scenarios, or the quality of annotations. In this work, we present a comprehensive new training dataset for hand-object interaction called HOGraspNet. It is the only real dataset that captures full grasp taxonomies, providing grasp annotation and wide intraclass variations. Using grasp taxonomies as atomic actions, their space and time combinatorial can represent complex hand activities around objects. We select 22 rigid objects from the YCB dataset and 8 other compound objects using shape and size taxonomies, ensuring coverage of all hand grasp configurations. The dataset includes diverse hand shapes from 99 participants aged 10 to 74, continuous video frames, and a 1.5M RGB-Depth of sparse frames with annotations. It offers labels for 3D hand and object meshes, 3D keypoints, contact maps, and grasp labels. Accurate hand and object 3D meshes are obtained by fitting the hand parametric model (MANO) and the hand implicit function (HALO) to multi-view RGBD frames, with the MoCap system only for objects. Note that HALO fitting does not require any parameter tuning, enabling scalability to the dataset’s size with comparable accuracy to MANO. We evaluate HOGraspNet on relevant tasks: grasp classification and 3D hand pose estimation. The result shows performance variations based on grasp type and object class, indicating the potential importance of the interaction space captured by our dataset. The provided data aims at learning universal shape priors or foundation models for 3D hand-object interaction. Our dataset and code are available at https://hograspnet2024.github.io/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arapi, V., Della Santina, C., Averta, G., Bicchi, A., Bianchi, M.: Understanding human manipulation with the environment: a novel taxonomy for video labelling. IEEE Robot. Autom. Lett. 6(4), 6537–6544 (2021)

    Article  Google Scholar 

  2. Bhatnagar, B.L., Xie, X., Petrov, I., Sminchisescu, C., Theobalt, C., Pons-Moll, G.: Behave: dataset and method for tracking human object interactions. In: CVPR (2022)

    Google Scholar 

  3. Brahmbhatt, S., Ham, C., Kemp, C.C., Hays, J.: ContactDB: analyzing and predicting grasp contact via thermal imaging. In: CVPR (2019)

    Google Scholar 

  4. Brahmbhatt, S., Tang, C., Twigg, C.D., Kemp, C.C., Hays, J.: ContactPose: a dataset of grasps with object contact and hand pose. In: ECCV (2020)

    Google Scholar 

  5. Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: The YCB object and model set: towards common benchmarks for manipulation research. In: ICAR (2015)

    Google Scholar 

  6. Cao, Z., Radosavovic, I., Kanazawa, A., Malik, J.: Reconstructing hand-object interactions in the wild. In: ICCV (2021)

    Google Scholar 

  7. Caramalau, R., Bhattarai, B., Kim, T.K.: Active learning for Bayesian 3D hand pose estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3419–3428 (2021)

    Google Scholar 

  8. Chao, Y.W., et al.: DexYCB: a benchmark for capturing hand grasping of objects. In: CVPR (2021)

    Google Scholar 

  9. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  10. Chen, Y., et al.: Joint hand-object 3D reconstruction from a single image with cross-branch feature fusion. TIP (2021)

    Google Scholar 

  11. Chen, Z., Chen, S., Schmid, C., Laptev, I.: gSDF: geometry-driven signed distance functions for 3D hand-object reconstruction. In: CVPR (2023)

    Google Scholar 

  12. Chen, Z., Hasson, Y., Schmid, C., Laptev, I.: AlignSDF: pose-aligned signed distance fields for hand-object reconstruction. In: ECCV (2022)

    Google Scholar 

  13. Cho, W., Park, G., Woo, W.: Tracking an object-grabbing hand using occluded depth reconstruction. In: ISMAR-Adjunct (2018)

    Google Scholar 

  14. Cho, W., Park, G., Woo, W.: Bare-hand depth inpainting for 3D tracking of hand interacting with object. In: ISMAR (2020)

    Google Scholar 

  15. Cini, F., Ortenzi, V., Corke, P., Controzzi, M.: On the choice of grasp type and location when handing over an object. Sci. Robot. 4(27), eaau9757 (2019)

    Google Scholar 

  16. Corona, E., Pumarola, A., Alenya, G., Moreno-Noguer, F., Rogez, G.: Ganhand: predicting human grasp affordances in multi-object scenes. In: CVPR (2020)

    Google Scholar 

  17. Damen, D., et al.: Rescaling egocentric vision: collection, pipeline and challenges for epic-kitchens-100. IJCV (2022)

    Google Scholar 

  18. Doosti, B., Naha, S., Mirbagheri, M., Crandall, D.J.: Hope-net: a graph-based model for hand-object pose estimation. In: CVPR (2020)

    Google Scholar 

  19. Fan, Z., et al.: ARCTIC: a dataset for dexterous bimanual hand-object manipulation. In: CVPR (2023)

    Google Scholar 

  20. Feix, T., Romero, J., Schmiedmayer, H.B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. Hum.-Mach. Syst. 46(1), 66–77 (2015)

    Article  Google Scholar 

  21. Fieraru, M., Zanfir, M., Oneata, E., Popa, A.I., Olaru, V., Sminchisescu, C.: Three-dimensional reconstruction of human interactions. In: CVPR (2020)

    Google Scholar 

  22. Fu, Q., Liu, X., Xu, R., Niebles, J.C., Kitani, K.M.: Deformer: dynamic fusion transformer for robust hand pose estimation. arXiv preprint arXiv:2303.04991 (2023)

  23. Garcia-Hernando, G., Johns, E., Kim, T.K.: Physics-based dexterous manipulations with estimated hand poses and residual reinforcement learning. In: IROS (2020)

    Google Scholar 

  24. Garcia-Hernando, G., Yuan, S., Baek, S., Kim, T.K.: First-person hand action benchmark with RGB-D videos and 3d hand pose annotations. In: CVPR (2018)

    Google Scholar 

  25. Gomez-Donoso, F., Orts-Escolano, S., Cazorla, M.: Large-scale multiview 3D hand pose dataset. IVC (2019)

    Google Scholar 

  26. Goyal, M., Modi, S., Goyal, R., Gupta, S.: Human hands as probes for interactive object understanding. In: CVPR (2022)

    Google Scholar 

  27. Grady, P., Tang, C., Twigg, C.D., Vo, M., Brahmbhatt, S., Kemp, C.C.: ContactOpt: optimizing contact to improve grasps. In: CVPR (2021)

    Google Scholar 

  28. Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: Honnotate: a method for 3D annotation of hand and object poses. In: CVPR (2020)

    Google Scholar 

  29. Hampali, S., Sarkar, S.D., Rad, M., Lepetit, V.: Keypoint transformer: solving joint identification in challenging hands and object interactions for accurate 3d pose estimation. In: CVPR (2022)

    Google Scholar 

  30. Hassan, M., Choutas, V., Tzionas, D., Black, M.J.: Resolving 3D human pose ambiguities with 3D scene constraints. In: ICCV (2019)

    Google Scholar 

  31. Hasson, Y., Tekin, B., Bogo, F., Laptev, I., Pollefeys, M., Schmid, C.: Leveraging photometric consistency over time for sparsely supervised hand-object reconstruction. In: CVPR (2020)

    Google Scholar 

  32. Hasson, Y., Varol, G., Schmid, C., Laptev, I.: Towards unconstrained joint hand-object reconstruction from RGB videos. In: 3DV (2021)

    Google Scholar 

  33. Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11807–11816 (2019)

    Google Scholar 

  34. Hu, H., Yi, X., Zhang, H., Yong, J.H., Xu, F.: Physical interaction: reconstructing hand-object interactions with physics. In: SIGGRAPH Asia (2022)

    Google Scholar 

  35. Huang, C.H.P., et al.: Capturing and inferring dense full-body human-scene contact. In: CVPR (2022)

    Google Scholar 

  36. Huang, Y., Taheri, O., Black, M.J., Tzionas, D.: InterCap: joint markerless 3D tracking of humans and objects in interaction from multi-view RGB-D images. IJCV (2024)

    Google Scholar 

  37. Jiang, N., et al.: Full-body articulated human-object interaction. In: ICCV (2023)

    Google Scholar 

  38. Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: ICCV (2015)

    Google Scholar 

  39. Joo, H., Neverova, N., Vedaldi, A.: Exemplar fine-tuning for 3D human pose fitting towards in-the-wild 3D human pose estimation. In: 3DV (2020)

    Google Scholar 

  40. Karunratanakul, K., Spurr, A., Fan, Z., Hilliges, O., Tang, S.: A skeleton-driven neural occupancy representation for articulated hands. In: 3DV (2021)

    Google Scholar 

  41. Kwon, T., Tekin, B., Stühmer, J., Bogo, F., Pollefeys, M.: H2O: two hands manipulating objects for first person interaction recognition. In: ICCV (2021)

    Google Scholar 

  42. Lee, J., Saito, S., Nam, G., Sung, M., Kim, T.K.: InterHandGen: two-hand interaction generation via cascaded reverse diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 527–537 (2024)

    Google Scholar 

  43. Lee, J., Sung, M., Choi, H., Kim, T.K.: Im2hands: learning attentive implicit representation of interacting two-hand shapes. In: CVPR (2023)

    Google Scholar 

  44. Leroy, V., Weinzaepfel, P., Brégier, R., Combaluzier, H., Rogez, G.: SMPLy benchmarking 3D human pose estimation in the wild. In: 3DV (2020)

    Google Scholar 

  45. Li, M., et al.: Interacting attention graph for single image two-hand reconstruction. In: CVPR (2022)

    Google Scholar 

  46. Lin, K., Wang, L., Liu, Z.: Mesh graphormer. In: ICCV (2021)

    Google Scholar 

  47. Lin, P., et al.: HandDiffuse: generative controllers for two-hand interactions via diffusion models. In: CoRR, vol. abs/2312.04867 (2023)

    Google Scholar 

  48. Lin, Z., Ding, C., Yao, H., Kuang, Z., Huang, S.: Harmonious feature learning for interactive hand-object pose estimation. In: CVPR (2023)

    Google Scholar 

  49. Liu, J., Feng, F., Nakamura, Y.C., Pollard, N.S.: A taxonomy of everyday grasps in action. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 573–580. IEEE (2014)

    Google Scholar 

  50. Liu, S., Jiang, H., Xu, J., Liu, S., Wang, X.: Semi-supervised 3D hand-object poses estimation with interactions in time. In: CVPR (2021)

    Google Scholar 

  51. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM TOG (2015)

    Google Scholar 

  52. Lugaresi, C., et al.: MediaPipe: a framework for building perception pipelines. arXiv preprint arXiv:1906.08172 (2019)

  53. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (2008)

    Google Scholar 

  54. Mehta, D., et al.: Single-shot multi-person 3D pose estimation from monocular RGB. In: 3DV (2018)

    Google Scholar 

  55. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)

    Google Scholar 

  56. Moon, G., et al.: A dataset of relighted 3d interacting hands. In: NeurIPS (2024)

    Google Scholar 

  57. Moon, G., Yu, S.I., Wen, H., Shiratori, T., Lee, K.M.: InterHand2.6M: a dataset and baseline for 3D interacting hand pose estimation from a single RGB image. In: ECCV (2020)

    Google Scholar 

  58. Mueller, F., Mehta, D., Sotnychenko, O., Sridhar, S., Casas, D., Theobalt, C.: Real-time hand tracking under occlusion from an egocentric RGB-D sensor. In: ICCV (2017)

    Google Scholar 

  59. Park, G., Kim, T.K., Woo, W.: 3D hand pose estimation with a single infrared camera via domain transfer learning. In: ISMAR (2020)

    Google Scholar 

  60. Patel, P., Huang, C.H.P., Tesch, J., Hoffmann, D.T., Tripathi, S., Black, M.J.: AGORA: avatars in geography optimized for regression analysis. In: CVPR (2021)

    Google Scholar 

  61. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR (2019)

    Google Scholar 

  62. Pavlakos, G., Shan, D., Radosavovic, I., Kanazawa, A., Fouhey, D., Malik, J.: Reconstructing hands in 3D with transformers. In: CVPR (2024)

    Google Scholar 

  63. Pumarola, A., Sanchez, J., Choi, G., Sanfeliu, A., Moreno-Noguer, F.: 3DPeople: modeling the geometry of dressed humans. In: ICCV (2019)

    Google Scholar 

  64. Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth. In: CVPR (2014)

    Google Scholar 

  65. Qu, W., et al.: Novel-view synthesis and pose estimation for hand-object interaction from sparse views. In: ICCV (2023)

    Google Scholar 

  66. Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  67. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM TOG (2017)

    Google Scholar 

  68. Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using multiview bootstrapping. In: CVPR (2017)

    Google Scholar 

  69. Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand motion tracking using RGB and depth data. In: ICCV (2013)

    Google Scholar 

  70. Stival, F., Michieletto, S., Cognolato, M., Pagello, E., Müller, H., Atzori, M.: A quantitative taxonomy of human hand grasps. J. Neuroeng. Rehabil. 16, 1–17 (2019)

    Article  Google Scholar 

  71. Sun, Y., Liu, W., Bao, Q., Fu, Y., Mei, T., Black, M.J.: Putting people in their place: monocular regression of 3D people in depth. In: CVPR (2022)

    Google Scholar 

  72. Swamy, A., et al.: SHOWMe: benchmarking object-agnostic hand-object 3D reconstruction. In: ICCV (2023)

    Google Scholar 

  73. Taheri, O., Ghorbani, N., Black, M.J., Tzionas, D.: Grab: a dataset of whole-body human grasping of objects. In: ECCV 2020 (2020)

    Google Scholar 

  74. Tang, D., Jin Chang, H., Tejani, A., Kim, T.K.: Latent regression forest: structured estimation of 3D articulated hand posture. In: CVPR (2014)

    Google Scholar 

  75. Tekin, B., Bogo, F., Pollefeys, M.: H+O: unified egocentric recognition of 3D hand-object poses and interactions. In: CVPR (2019)

    Google Scholar 

  76. Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery of human hands using convolutional networks. ACM TOG (2014)

    Google Scholar 

  77. Tse, T.H.E., Zhang, Z., Kim, K.I., Leonardis, A., Zheng, F., Chang, H.J.: S2 contact: graph-based network for 3D hand-object contact estimation with semi-supervised learning. In: ECCV (2022)

    Google Scholar 

  78. Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.: Capturing hands in action using discriminative salient points and physics simulation. IJCV (2016)

    Google Scholar 

  79. Wang, J., et al.: RGB2Hands: real-time tracking of 3D hand interactions from monocular RGB video. ACM TOG (2020)

    Google Scholar 

  80. Wen, G., Xiaoyu, B., Xavier, A.P., Francesc, M.N.: Multi-person extreme motion prediction. In: CVPR (2022)

    Google Scholar 

  81. Xu, C., Cheng, L.: Efficient hand pose estimation from a single depth image. In: ICCV (2013)

    Google Scholar 

  82. Xu, H., Wang, T., Tang, X., Fu, C.W.: H2ONet: hand-occlusion-and-orientation-aware network for real-time 3D hand mesh reconstruction. In: CVPR (2023)

    Google Scholar 

  83. Yang, L., et al.: OakInk: a large-scale knowledge repository for understanding hand-object interaction. In: CVPR (2022)

    Google Scholar 

  84. Yang, L., Zhan, X., Li, K., Xu, W., Li, J., Lu, C.: CPF: learning a contact potential field to model the hand-object interaction. In: ICCV (2021)

    Google Scholar 

  85. Yin, Y., Guo, C., Kaufmann, M., Zarate, J., Song, J., Hilliges, O.: Hi4D: 4D instance segmentation of close human interaction. In: CVPR (2023)

    Google Scholar 

  86. Yu, Z., Yang, L., Chen, S., Yao, A.: Local and global point cloud reconstruction for 3D hand pose estimation. In: BMVC (2021)

    Google Scholar 

  87. Yuan, S., Ye, Q., Stenger, B., Jain, S., Kim, T.K.: BigHand2.2M benchmark: hand pose dataset and state of the art analysis. In: CVPR (2017)

    Google Scholar 

  88. Zhang, B., et al.: Interacting two-hand 3D pose and shape reconstruction from single color image. In: ICCV (2021)

    Google Scholar 

  89. Zhang, J., Jiao, J., Chen, M., Qu, L., Xu, X., Yang, Q.: 3D hand pose tracking and estimation using stereo matching. In: ICIP (2017)

    Google Scholar 

  90. Zhang, S., et al.: EgoBody: human body shape and motion of interacting people from head-mounted devices. In: ECCV (2022)

    Google Scholar 

  91. Zhang, X., et al.: Hand image understanding via deep multi-task learning. In: ICCV (2021)

    Google Scholar 

  92. Zheng, X., Wen, C., Xue, Z., Ren, P., Wang, J.: HaMuCo: hand pose estimation via multiview collaborative self-supervised learning. In: ICCV (2023)

    Google Scholar 

  93. Zheng, Y., et al.: Deepmulticap: performance capture of multiple characters using sparse multiview cameras. In: ICCV (2021)

    Google Scholar 

  94. Zimmermann, C., Argus, M., Brox, T.: Contrastive representation learning for hand shape estimation. In: GCPR (2021)

    Google Scholar 

  95. Zimmermann, C., Brox, T.: Learning to estimate 3D hand pose from single RGB images. In: ICCV (2017)

    Google Scholar 

  96. Zimmermann, C., Ceylan, D., Yang, J., Russell, B., Argus, M., Brox, T.: FreiHAND: a dataset for markerless capture of hand pose and shape from single RGB images. In: ICCV (2019)

    Google Scholar 

  97. Zuo, B., Zhao, Z., Sun, W., Xie, W., Xue, Z., Wang, Y.: Reconstructing interacting hands with interaction prior from monocular images. In: ICCV (2023)

    Google Scholar 

Download references

Acknowledgement

This work was in part sponsored by NST grant (CRC 21011, MSIT), IITP grant (No. 2019-0-01270 and RS-2023-00228996, MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojin Cho .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 26776 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, W. et al. (2025). Dense Hand-Object (HO) GraspNet with Full Grasping Taxonomy and Dynamics. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15140. Springer, Cham. https://doi.org/10.1007/978-3-031-73007-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73007-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73006-1

  • Online ISBN: 978-3-031-73007-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics