Skip to main content

Source-Free Domain-Invariant Performance Prediction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Accurately estimating model performance poses a significant challenge, particularly in scenarios where the source and target domains follow different data distributions. Most existing performance prediction methods heavily rely on the source data in their estimation process, limiting their applicability in a more realistic setting where only the trained model is accessible. The few methods that do not require source data exhibit considerably inferior performance. In this work, we propose a source-free approach centred on uncertainty-based estimation, using a generative model for calibration in the absence of source data. We establish connections between our approach for unsupervised calibration and temperature scaling. We then employ a gradient-based strategy to evaluate the correctness of the calibrated predictions. Our experiments on benchmark object recognition datasets reveal that existing source-based methods fall short with limited source sample availability. Furthermore, our approach significantly outperforms the current state-of-the-art source-free and source-based methods, affirming its effectiveness in domain-invariant performance estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baek, C., Jiang, Y., Raghunathan, A., Kolter, J.Z.: Agreement-on-the-line: predicting the performance of neural networks under distribution shift. In: Advances in Neural Information Processing Systems (NeurIPS) (2022). https://openreview.net/forum?id=EZZsnke1kt

  2. Bándi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38, 550–560 (2019). https://api.semanticscholar.org/CorpusID:59600431

  3. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  4. Christie, G., Fendley, N., Wilson, J., Mukherjee, R.: Functional map of the world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6172–6180 (2018). https://doi.org/10.1109/CVPR.2018.00646

  5. Deng, W., Gould, S., Zheng, L.: What does rotation prediction tell us about classifier accuracy under varying testing environments? In: Proceedings of the International Conference of Machine Learning (ICML) (2021). https://proceedings.mlr.press/v139/deng21a/deng21a.pdf

  6. Deng, W., Suh, Y., Gould, S., Zheng, L.: Confidence and dispersity speak: Characterising prediction matrix for unsupervised accuracy estimation. In: Proceedings of the International Conference on Machine Learning (ICML) (2023). https://api.semanticscholar.org/CorpusID:256503627

  7. Deng, W., Zheng, L.: Are labels always necessary for classifier accuracy evaluation? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021). https://openaccess.thecvf.com/content/CVPR2021/papers/Deng_Are_Labels_Always_Necessary_for_Classifier_Accuracy_Evaluation_CVPR_2021_paper.pdf

  8. Denker, J., et al.: Neural network recognizer for hand-written zip code digits. In: Advances in Neural Information Processing Systems (NeurIPS). vol. 1 (1989)

    Google Scholar 

  9. Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: on the utilization of multiple datasets and web images for softening bias. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1657–1664 (2013). https://api.semanticscholar.org/CorpusID:722896

  10. de G. Matthews, A.G., Hron, J., Rowland, M., Turner, R.E., Ghahramani, Z.: Gaussian process behaviour in wide deep neural networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018). https://openreview.net/forum?id=H1-nGgWC-

  11. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the International Conference of Machine Learning (ICML) (2015). https://proceedings.mlr.press/v37/ganin15.pdf

  12. Garg, S., Balakrishnan, S., Lipton, Z.C., Neyshabur, B., Sedghi, H.: Leveraging unlabeled data to predict out-of-distribution performance. In: Proceedings of the International Conference on Learning Representations, ICLR (2022). https://arxiv.org/abs/2201.04234

  13. Garriga-Alonso, A., Rasmussen, C.E., Aitchison, L.: Deep convolutional networks as shallow gaussian processes. In: Proceedings of the International Conference on Learning Representations (ICLR) (2019). https://openreview.net/forum?id=Bklfsi0cKm

  14. Gaston, J., Das, S., of Computer Science, R.P.I.D.: Active Learning of Gaussian Mixture Models Using Direct Estimation of Error Reduction (2012). https://books.google.com.au/books?id=dPh8zQEACAAJ

  15. Grathwohl, W., Wang, K.C., Jacobsen, J.H., Duvenaud, D., Norouzi, M., Swersky, K.: Your classifier is secretly an energy based model and you should treat it like one. In: Proceedings of the International Conference on Learning Representations (ICLR) (2020). https://openreview.net/forum?id=Hkxzx0NtDB

  16. Guillory, D., Shankar, V., Ebrahimi, S., Darrell, T., Schmidt, L.: Predicting with confidence on unseen distributions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1114–1124 (2021). https://doi.org/10.1109/ICCV48922.2021.00117

  17. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2021), https://openreview.net/forum?id=lQdXeXDoWtI

  18. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 1321–1330 (2017), https://proceedings.mlr.press/v70/guo17a/guo17a.pdf

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  20. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. ArXiv abs/1610.02136 (2016). https://api.semanticscholar.org/CorpusID:13046179

  21. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. ArXiv abs/1503.02531 (2015). https://api.semanticscholar.org/CorpusID:7200347

  22. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

  23. Huang, R., Geng, A., Li, Y.: On the importance of gradients for detecting distributional shifts in the wild. In: Advances in Neural Information Processing Systems (NeurIPS) (2021). https://proceedings.nips.cc/paper_files/paper/2021/file/063e26c670d07bb7c4d30e6fc69fe056-Paper.pdf

  24. Jiang, Y., Nagarajan, V., Baek, C., Kolter, J.Z.: Assessing generalization of SGD via disagreement. In: Proceedings of the International Conference on Learning Representations (ICLR) (2022). https://openreview.net/forum?id=WvOGCEAQhxl

  25. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems (NeurIPS). vol. 30 (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf

  26. Koh, P.W., et al.: WILDS: a benchmark of in-the-wild distribution shifts. In: Proceedings of the International Conference on Machine Learning (ICML). vol. 139, pp. 5637–5664 (2021). https://proceedings.mlr.press/v139/koh21a.html

  27. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  28. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. ATT Labs [Online] 2 (2010). http://yann.lecun.com/exdb/mnist

  29. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5543–5551 (2017). https://api.semanticscholar.org/CorpusID:6037691

  30. Lu, Y., Wang, Z., Zhai, R., Kolouri, S., Campbell, J., Sycara, K.P.: Predicting out-of-distribution error with confidence optimal transport. In: ICLR 2023 Workshop on Pitfalls of limited data and computation for Trustworthy ML (2023). https://openreview.net/pdf?id=dNGxmwRpFyG

  31. Manh Bui, H., Liu, A.: Density-softmax: efficient test-time model for uncertainty estimation and robustness under distribution shifts. In: Proceedings of the International Conference on Machine Learning (ICML) (2024)

    Google Scholar 

  32. Mukhoti, J., Kirsch, A., van Amersfoor t, J., Torr, P.H., Gal, Y.: Deep deterministic uncertainty: a new simple baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 24384–24394 (2023). https://openaccess.thecvf.com/content/CVPR2023/papers/Mukhoti_Deep_Deterministic_Uncertainty_A_New_Simple_Baseline_CVPR_2023_paper.pdf

  33. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011). https://ai.stanford.edu/~twangcat/papers/nips2011_housenumbers.pdf

  34. Peng, R., Zou, H., Wang, H., Zeng, Y., Huang, Z., Zhao, J.: Energy-based automated model evaluation. In: Proceedings of the International Conference on Learning Representations (ICLR) (2024). https://openreview.net/forum?id=CHGcP6lVWd

  35. Rosenfeld, E., Garg, S.: (almost) provable error bounds under distribution shift via disagreement discrepancy. ArXiv abs/2306.00312 (2023). https://api.semanticscholar.org/CorpusID:258999608

  36. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). https://openaccess.thecvf.com/content_cvpr_2017/papers/Venkateswara_Deep_Hashing_Network_CVPR_2017_paper.pdf

  37. Xie, R., Odonnat, A., Feofanov, V., Redko, I., Zhang, J., An, B.: Leveraging gradients for unsupervised accuracy estimation under distribution shift (2024)

    Google Scholar 

  38. Xie, R., Wei, H., Feng, L., Cao, Y., An, B.: On the importance of feature separability in predicting out-of-distribution error. In: Advances in Neural Information Processing Systems (NeurIPS) (2023). https://openreview.net/forum?id=A86JTXllHa

  39. Yu, Y., Yang, Z., Wei, A., Ma, Y., Steinhardt, J.: Predicting out-of-distribution error with the projection norm. In: Proceedings of the International Conference on Machine Learning (ICML). vol. 162, pp. 25721–25746 (2022). https://proceedings.mlr.press/v162/yu22i/yu22i.pdf

Download references

Acknowledgements

This research is supported by the National Key Research and Development Program of China No. 2020AAA0109400 and the Shenyang Science and Technology Plan Fund (No. 21-102-0-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Khramtsova .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1381 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khramtsova, E., Baktashmotlagh, M., Zuccon, G., Wang, X., Salzmann, M. (2025). Source-Free Domain-Invariant Performance Prediction. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15138. Springer, Cham. https://doi.org/10.1007/978-3-031-72989-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72989-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72988-1

  • Online ISBN: 978-3-031-72989-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics