Skip to main content

Learning Representation for Multitask Learning Through Self-supervised Auxiliary Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Multi-task learning is a popular machine learning approach that enables simultaneous learning of multiple related tasks, improving algorithmic efficiency and effectiveness. In the hard parameter sharing approach, an encoder shared through multiple tasks generates data representations passed to task-specific predictors. Therefore, it is crucial to have a shared encoder that provides decent representations for every and each task. However, despite recent advances in multi-task learning, the question of how to improve the quality of representations generated by the shared encoder remains open. To address this gap, we propose a novel approach called Dummy Gradient norm Regularization (DGR) that aims to improve the universality of the representations generated by the shared encoder. Specifically, the method decreases the norm of the gradient of the loss function with respect to dummy task-specific predictors to improve the universality of the shared encoder’s representations. Through experiments on multiple multi-task learning benchmark datasets, we demonstrate that DGR effectively improves the quality of the shared representations, leading to better multi-task prediction performances. Applied to various classifiers, the shared representations generated by DGR also show superior performance compared to existing multi-task learning methods. Moreover, our approach takes advantage of computational efficiency due to its simplicity. The simplicity also allows us to seamlessly integrate DGR with the existing multi-task learning algorithms. GitHub link: https://github.com/Sinseokwon/LearningUnivforMTL/tree/main.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, C., Farrell, R.: Improving fractal pre-training. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1300–1309 (2022)

    Google Scholar 

  2. Bachmann, R., Mizrahi, D., Atanov, A., Zamir, A.: Multimae: multi-modal multi-task masked autoencoders. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13697, pp. 348–367. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_20

    Chapter  Google Scholar 

  3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  4. Caruana, R.: Multitask Learning. Springer, Heidelberg (1998)

    Google Scholar 

  5. Chen, T., et al.: The lottery tickets hypothesis for supervised and self-supervised pre-training in computer vision models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16306–16316 (2021)

    Google Scholar 

  6. Chen, Y., Zhao, D., Lv, L., Zhang, Q.: Multi-task learning for dangerous object detection in autonomous driving. Inf. Sci. 432, 559–571 (2018)

    Article  Google Scholar 

  7. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: gradient normalization for adaptive loss balancing in deep multitask networks. In: International Conference on Machine Learning, pp. 794–803. PMLR (2018)

    Google Scholar 

  8. Chen, Z., et al.: Just pick a sign: optimizing deep multitask models with gradient sign dropout. In: Advances in Neural Information Processing Systems, vol. 33, pp. 2039–2050 (2020)

    Google Scholar 

  9. Chowdhuri, S., Pankaj, T., Zipser, K.: Multinet: multi-modal multi-task learning for autonomous driving. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1496–1504. IEEE (2019)

    Google Scholar 

  10. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  12. Désidéri, J.A.: Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. C.R. Math. 350(5–6), 313–318 (2012)

    Article  MathSciNet  Google Scholar 

  13. Dong, X., Taylor, C.J., Cootes, T.F.: Defect classification and detection using a multitask deep one-class CNN. IEEE Trans. Autom. Sci. Eng. 19(3), 1719–1730 (2021)

    Article  Google Scholar 

  14. Du, Y., Czarnecki, W.M., Jayakumar, S.M., Farajtabar, M., Pascanu, R., Lakshminarayanan, B.: Adapting auxiliary losses using gradient similarity. arXiv preprint arXiv:1812.02224 (2018)

  15. Evgeniou, T., Pontil, M.: Regularized multi–task learning. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117 (2004)

    Google Scholar 

  16. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  17. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020)

  18. de Geus, D., Meletis, P., Lu, C., Wen, X., Dubbelman, G.: Part-aware panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5485–5494 (2021)

    Google Scholar 

  19. Guo, M., Haque, A., Huang, D.-A., Yeung, S., Fei-Fei, L.: Dynamic task prioritization for multitask learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 282–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_17

    Chapter  Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)

  22. Ishihara, K., Kanervisto, A., Miura, J., Hautamaki, V.: Multi-task learning with attention for end-to-end autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2902–2911 (2021)

    Google Scholar 

  23. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  25. Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_29

    Chapter  Google Scholar 

  26. Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1920–1929 (2019)

    Google Scholar 

  27. Lee, S., Son, Y.: Multitask learning with single gradient step update for task balancing. Neurocomputing 467, 442–453 (2022)

    Article  Google Scholar 

  28. Li, Y., Li, J.: An end-to-end defect detection method for mobile phone light guide plate via multitask learning. IEEE Trans. Instrum. Meas. 70, 1–13 (2021)

    Google Scholar 

  29. Lin, X., Zhen, H.L., Li, Z., Zhang, Q.F., Kwong, S.: Pareto multi-task learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  30. Liu, B., Liu, X., Jin, X., Stone, P., Liu, Q.: Conflict-averse gradient descent for multi-task learning. In: Advances in Neural Information Processing Systems, vol. 34, pp. 18878–18890 (2021)

    Google Scholar 

  31. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  32. Liu, L., et al.: Towards impartial multi-task learning. In: ICLR (2021)

    Google Scholar 

  33. Liu, S., Liang, Y., Gitter, A.: Loss-balanced task weighting to reduce negative transfer in multi-task learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9977–9978 (2019)

    Google Scholar 

  34. Liu, S., Davison, A., Johns, E.: Self-supervised generalisation with meta auxiliary learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  35. Liu, S., James, S., Davison, A.J., Johns, E.: Auto-lambda: disentangling dynamic task relationships. arXiv preprint arXiv:2202.03091 (2022)

  36. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)

    Google Scholar 

  37. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  38. Maninis, K.K., Radosavovic, I., Kokkinos, I.: Attentive single-tasking of multiple tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1851–1860 (2019)

    Google Scholar 

  39. Meyerson, E., Miikkulainen, R.: Pseudo-task augmentation: from deep multitask learning to intratask sharing-and back. In: International Conference on Machine Learning, pp. 3511–3520. PMLR (2018)

    Google Scholar 

  40. Navon, A., Achituve, I., Maron, H., Chechik, G., Fetaya, E.: Auxiliary learning by implicit differentiation. arXiv preprint arXiv:2007.02693 (2020)

  41. Navon, A., et al.: Multi-task learning as a bargaining game. arXiv preprint arXiv:2202.01017 (2022)

  42. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  43. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)

  44. Sampath, V., Maurtua, I., Martín, J.J.A., Rivera, A., Molina, J., Gutierrez, A.: Attention guided multi-task learning for surface defect identification. IEEE Trans. Ind. Inform. 19(9), 9713–9721 (2023)

    Article  Google Scholar 

  45. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  46. Shamsian, A., Navon, A., Glazer, N., Kawaguchi, K., Chechik, G., Fetaya, E.: Auxiliary learning as an asymmetric bargaining game. In: International Conference on Machine Learning, pp. 30689–30705. PMLR (2023)

    Google Scholar 

  47. Shao, L., Zhang, E., Ma, Q., Li, M.: Pixel-wise semisupervised fabric defect detection method combined with multitask mean teacher. IEEE Trans. Instrum. Meas. 71, 1–11 (2022)

    Google Scholar 

  48. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  49. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  50. Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van Gool, L.: Multi-task learning for dense prediction tasks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3614–3633 (2021)

    Google Scholar 

  51. Wang, X., Li, L., Ye, W., Long, M., Wang, J.: Transferable attention for domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5345–5352 (2019)

    Google Scholar 

  52. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  53. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery for multi-task learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 5824–5836 (2020)

    Google Scholar 

  54. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning (still) requires rethinking generalization. Commun. ACM 64(3), 107–115 (2021)

    Article  Google Scholar 

  55. Zhang, Y., Yang, Q.: An overview of multi-task learning. Natl. Sci. Rev. 5(1), 30–43 (2018)

    Article  Google Scholar 

  56. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5810–5818 (2017)

    Google Scholar 

  57. Zhang, Z., et al.: Task compass: scaling multi-task pre-training with task prefix. arXiv preprint arXiv:2210.06277 (2022)

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT) of Korea (No. RS-2023-00208412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngdoo Son .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5130 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shin, S., Do, H., Son, Y. (2025). Learning Representation for Multitask Learning Through Self-supervised Auxiliary Learning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15138. Springer, Cham. https://doi.org/10.1007/978-3-031-72989-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72989-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72988-1

  • Online ISBN: 978-3-031-72989-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics