Abstract
Multi-task learning is a popular machine learning approach that enables simultaneous learning of multiple related tasks, improving algorithmic efficiency and effectiveness. In the hard parameter sharing approach, an encoder shared through multiple tasks generates data representations passed to task-specific predictors. Therefore, it is crucial to have a shared encoder that provides decent representations for every and each task. However, despite recent advances in multi-task learning, the question of how to improve the quality of representations generated by the shared encoder remains open. To address this gap, we propose a novel approach called Dummy Gradient norm Regularization (DGR) that aims to improve the universality of the representations generated by the shared encoder. Specifically, the method decreases the norm of the gradient of the loss function with respect to dummy task-specific predictors to improve the universality of the shared encoder’s representations. Through experiments on multiple multi-task learning benchmark datasets, we demonstrate that DGR effectively improves the quality of the shared representations, leading to better multi-task prediction performances. Applied to various classifiers, the shared representations generated by DGR also show superior performance compared to existing multi-task learning methods. Moreover, our approach takes advantage of computational efficiency due to its simplicity. The simplicity also allows us to seamlessly integrate DGR with the existing multi-task learning algorithms. GitHub link: https://github.com/Sinseokwon/LearningUnivforMTL/tree/main.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, C., Farrell, R.: Improving fractal pre-training. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1300–1309 (2022)
Bachmann, R., Mizrahi, D., Atanov, A., Zamir, A.: Multimae: multi-modal multi-task masked autoencoders. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13697, pp. 348–367. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_20
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)
Caruana, R.: Multitask Learning. Springer, Heidelberg (1998)
Chen, T., et al.: The lottery tickets hypothesis for supervised and self-supervised pre-training in computer vision models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16306–16316 (2021)
Chen, Y., Zhao, D., Lv, L., Zhang, Q.: Multi-task learning for dangerous object detection in autonomous driving. Inf. Sci. 432, 559–571 (2018)
Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: gradient normalization for adaptive loss balancing in deep multitask networks. In: International Conference on Machine Learning, pp. 794–803. PMLR (2018)
Chen, Z., et al.: Just pick a sign: optimizing deep multitask models with gradient sign dropout. In: Advances in Neural Information Processing Systems, vol. 33, pp. 2039–2050 (2020)
Chowdhuri, S., Pankaj, T., Zipser, K.: Multinet: multi-modal multi-task learning for autonomous driving. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1496–1504. IEEE (2019)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Désidéri, J.A.: Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. C.R. Math. 350(5–6), 313–318 (2012)
Dong, X., Taylor, C.J., Cootes, T.F.: Defect classification and detection using a multitask deep one-class CNN. IEEE Trans. Autom. Sci. Eng. 19(3), 1719–1730 (2021)
Du, Y., Czarnecki, W.M., Jayakumar, S.M., Farajtabar, M., Pascanu, R., Lakshminarayanan, B.: Adapting auxiliary losses using gradient similarity. arXiv preprint arXiv:1812.02224 (2018)
Evgeniou, T., Pontil, M.: Regularized multi–task learning. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117 (2004)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)
Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020)
de Geus, D., Meletis, P., Lu, C., Wen, X., Dubbelman, G.: Part-aware panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5485–5494 (2021)
Guo, M., Haque, A., Huang, D.-A., Yeung, S., Fei-Fei, L.: Dynamic task prioritization for multitask learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 282–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_17
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)
Ishihara, K., Kanervisto, A., Miura, J., Hautamaki, V.: Multi-task learning with attention for end-to-end autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2902–2911 (2021)
Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_29
Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1920–1929 (2019)
Lee, S., Son, Y.: Multitask learning with single gradient step update for task balancing. Neurocomputing 467, 442–453 (2022)
Li, Y., Li, J.: An end-to-end defect detection method for mobile phone light guide plate via multitask learning. IEEE Trans. Instrum. Meas. 70, 1–13 (2021)
Lin, X., Zhen, H.L., Li, Z., Zhang, Q.F., Kwong, S.: Pareto multi-task learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Liu, B., Liu, X., Jin, X., Stone, P., Liu, Q.: Conflict-averse gradient descent for multi-task learning. In: Advances in Neural Information Processing Systems, vol. 34, pp. 18878–18890 (2021)
Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)
Liu, L., et al.: Towards impartial multi-task learning. In: ICLR (2021)
Liu, S., Liang, Y., Gitter, A.: Loss-balanced task weighting to reduce negative transfer in multi-task learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9977–9978 (2019)
Liu, S., Davison, A., Johns, E.: Self-supervised generalisation with meta auxiliary learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Liu, S., James, S., Davison, A.J., Johns, E.: Auto-lambda: disentangling dynamic task relationships. arXiv preprint arXiv:2202.03091 (2022)
Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Maninis, K.K., Radosavovic, I., Kokkinos, I.: Attentive single-tasking of multiple tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1851–1860 (2019)
Meyerson, E., Miikkulainen, R.: Pseudo-task augmentation: from deep multitask learning to intratask sharing-and back. In: International Conference on Machine Learning, pp. 3511–3520. PMLR (2018)
Navon, A., Achituve, I., Maron, H., Chechik, G., Fetaya, E.: Auxiliary learning by implicit differentiation. arXiv preprint arXiv:2007.02693 (2020)
Navon, A., et al.: Multi-task learning as a bargaining game. arXiv preprint arXiv:2202.01017 (2022)
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)
Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)
Sampath, V., Maurtua, I., Martín, J.J.A., Rivera, A., Molina, J., Gutierrez, A.: Attention guided multi-task learning for surface defect identification. IEEE Trans. Ind. Inform. 19(9), 9713–9721 (2023)
Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Shamsian, A., Navon, A., Glazer, N., Kawaguchi, K., Chechik, G., Fetaya, E.: Auxiliary learning as an asymmetric bargaining game. In: International Conference on Machine Learning, pp. 30689–30705. PMLR (2023)
Shao, L., Zhang, E., Ma, Q., Li, M.: Pixel-wise semisupervised fabric defect detection method combined with multitask mean teacher. IEEE Trans. Instrum. Meas. 71, 1–11 (2022)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)
Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van Gool, L.: Multi-task learning for dense prediction tasks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3614–3633 (2021)
Wang, X., Li, L., Ye, W., Long, M., Wang, J.: Transferable attention for domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5345–5352 (2019)
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)
Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery for multi-task learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 5824–5836 (2020)
Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning (still) requires rethinking generalization. Commun. ACM 64(3), 107–115 (2021)
Zhang, Y., Yang, Q.: An overview of multi-task learning. Natl. Sci. Rev. 5(1), 30–43 (2018)
Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5810–5818 (2017)
Zhang, Z., et al.: Task compass: scaling multi-task pre-training with task prefix. arXiv preprint arXiv:2210.06277 (2022)
Acknowledgements
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT) of Korea (No. RS-2023-00208412).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shin, S., Do, H., Son, Y. (2025). Learning Representation for Multitask Learning Through Self-supervised Auxiliary Learning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15138. Springer, Cham. https://doi.org/10.1007/978-3-031-72989-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-72989-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72988-1
Online ISBN: 978-3-031-72989-8
eBook Packages: Computer ScienceComputer Science (R0)