Skip to main content

DyFADet: Dynamic Feature Aggregation for Temporal Action Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Recent proposed neural network-based Temporal Action Detection (TAD) models are inherently limited to extracting the discriminative representations and modeling action instances with various lengths from complex scenes by shared-weights detection heads. Inspired by the successes in dynamic neural networks, in this paper, we build a novel dynamic feature aggregation (DFA) module that can simultaneously adapt kernel weights and receptive fields at different timestamps. Based on DFA, the proposed dynamic encoder layer aggregates the temporal features within the action time ranges and guarantees the discriminability of the extracted representations. Moreover, using DFA helps to develop a Dynamic TAD head (DyHead), which adaptively aggregates the multi-scale features with adjusted parameters and learned receptive fields better to detect the action instances with diverse ranges from videos. With the proposed encoder layer and DyHead, a new dynamic TAD model, DyFADet, achieves promising performance on a series of challenging TAD benchmarks, including HACS-Segment, THUMOS14, ActivityNet-1.3, Epic-Kitchen 100, Ego4D-Moment QueriesV1.0, and FineAction. Code is released to https://github.com/yangle15/DyFADet-pytorch.

L. Yang and Z. Zheng—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarap, A.F.: Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375 (2018)

  2. Alwassel, H., Giancola, S., Ghanem, B.: TSP: temporally-sensitive pretraining of video encoders for localization tasks. In: ICCV (2021)

    Google Scholar 

  3. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  4. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS–improving object detection with one line of code. In: ICCV (2017)

    Google Scholar 

  5. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: ActivityNet: a large-scale video benchmark for human activity understanding. In: CVPR (2015)

    Google Scholar 

  6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  7. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  8. Chen, G., Zheng, Y.D., Wang, L., Lu, T.: DCAN: improving temporal action detection via dual context aggregation. In: AAAI (2022)

    Google Scholar 

  9. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: CVPR (2020)

    Google Scholar 

  10. Cheng, F., Bertasius, G.: Tallformer: temporal action localization with a long-memory transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13694, pp. 503–521. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19830-4_29

    Chapter  Google Scholar 

  11. Spconv Contributors: Spconv: spatially sparse convolution library (2022). https://github.com/traveller59/spconv

  12. Dai, J., et al.: Deformable convolutional networks. In: ICCV (2017)

    Google Scholar 

  13. Damen, D., et al.: Rescaling egocentric vision: collection, pipeline and challenges for EPIC-KITCHENS-100. IJCV 130, 33–55 (2022)

    Article  Google Scholar 

  14. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: ICCV (2019)

    Google Scholar 

  15. Grauman, K., et al.: Ego4D: around the world in 3,000 hours of egocentric video. In: CVPR (2022)

    Google Scholar 

  16. Han, Y., Huang, G., Song, S., Yang, L., Wang, H., Wang, Y.: Dynamic neural networks: a survey. IEEE TPAMI 44(11), 7436–7456 (2021)

    Article  Google Scholar 

  17. Han, Y., et al.: Latency-aware unified dynamic networks for efficient image recognition. IEEE TPAMI (2024)

    Google Scholar 

  18. Han, Y., et al.: Latency-aware spatial-wise dynamic networks. In: NeurIPS (2022)

    Google Scholar 

  19. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  20. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.: Multi-scale dense networks for resource efficient image classification. In: ICLR (2018)

    Google Scholar 

  21. Huang, G., et al.: Glance and focus networks for dynamic visual recognition. IEEE TPAMI 45(4), 4605–4621 (2023)

    Google Scholar 

  22. Jiang, Y.G., et al.: THUMOS challenge: action recognition with a large number of classes (2014). http://crcv.ucf.edu/THUMOS14/

  23. Lei, P., Todorovic, S.: Temporal deformable residual networks for action segmentation in videos. In: CVPR (2018)

    Google Scholar 

  24. Li, J., Liu, X., Zhang, M., Wang, D.: Spatio-temporal deformable 3D convnets with attention for action recognition. PR 98, 107037 (2020)

    Google Scholar 

  25. Lin, C., et al.: Learning salient boundary feature for anchor-free temporal action localization. In: CVPR (2021)

    Google Scholar 

  26. Lin, K.Q., et al.: Egocentric video-language pretraining. In: NeurIPS (2022)

    Google Scholar 

  27. Lin, T., Liu, X., Li, X., Ding, E., Wen, S.: BMN: boundary-matching network for temporal action proposal generation. In: ICCV (2019)

    Google Scholar 

  28. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: BSN: boundary sensitive network for temporal action proposal generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_1

    Chapter  Google Scholar 

  29. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  30. Liu, Q., Wang, Z.: Progressive boundary refinement network for temporal action detection. In: AAAI (2020)

    Google Scholar 

  31. Liu, X., et al.: End-to-end temporal action detection with transformer. IEEE TIP 31, 5427–5441 (2022)

    Google Scholar 

  32. Liu, Y., Wang, L., Wang, Y., Ma, X., Qiao, Y.: FineAction: a fine-grained video dataset for temporal action localization. IEEE TIP 31, 6937–6950 (2022)

    Google Scholar 

  33. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  34. Ma, N., Zhang, X., Huang, J., Sun, J.: WeightNet: revisiting the design space of weight networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 776–792. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_46

    Chapter  Google Scholar 

  35. Mac, K.N.C., Joshi, D., Yeh, R.A., Xiong, J., Feris, R.S., Do, M.N.: Learning motion in feature space: locally-consistent deformable convolution networks for fine-grained action detection. In: ICCV (2019)

    Google Scholar 

  36. Meng, Y., et al.: AR-Net: adaptive frame resolution for efficient action recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 86–104. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_6

    Chapter  Google Scholar 

  37. Qing, Z., et al.: Temporal context aggregation network for temporal action proposal refinement. In: CVPR (2021)

    Google Scholar 

  38. Shao, J., Wang, X., Quan, R., Zheng, J., Yang, J., Yang, Y.: Action sensitivity learning for temporal action localization. In: ICCV (2023)

    Google Scholar 

  39. Shi, D., Zhong, Y., Cao, Q., Ma, L., Li, J., Tao, D.: TriDet: temporal action detection with relative boundary modeling. In: CVPR (2023)

    Google Scholar 

  40. Shi, D., et al.: ReAct: temporal action detection with relational queries. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13670, pp. 105–121. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20080-9_7

    Chapter  Google Scholar 

  41. Song, L., et al.: Fine-grained dynamic head for object detection. In: NeurIPS (2020)

    Google Scholar 

  42. Sridhar, D., Quader, N., Muralidharan, S., Li, Y., Dai, P., Lu, J.: Class semantics-based attention for action detection. In: ICCV (2021)

    Google Scholar 

  43. Tan, J., Tang, J., Wang, L., Wu, G.: Relaxed transformer decoders for direct action proposal generation. In: ICCV (2021)

    Google Scholar 

  44. Tang, T.N., Kim, K., Sohn, K.: TemporalMaxer: maximize temporal context with only max pooling for temporal action localization. arXiv preprint arXiv:2303.09055 (2023)

  45. Wang, L., et al.: VideoMAE V2: scaling video masked autoencoders with dual masking. In: CVPR (2023)

    Google Scholar 

  46. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  47. Wang, Y., et al.: InternVideo: general video foundation models via generative and discriminative learning. arXiv preprint arXiv:2212.03191 (2022)

  48. Wang, Y., Chen, Z., Jiang, H., Song, S., Han, Y., Huang, G.: Adaptive focus for efficient video recognition. In: ICCV (2021)

    Google Scholar 

  49. Weng, Y., Pan, Z., Han, M., Chang, X., Zhuang, B.: An efficient spatio-temporal pyramid transformer for action detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13694, pp. 358–375. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19830-4_21

    Chapter  Google Scholar 

  50. Wu, B., et al.: Shift: a zero flop, zero parameter alternative to spatial convolutions. In: CVPR (2018)

    Google Scholar 

  51. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  52. Wu, Z., Xiong, C., Ma, C.Y., Socher, R., Davis, L.S.: AdaFrame: adaptive frame selection for fast video recognition. In: CVPR (2019)

    Google Scholar 

  53. Xu, M., Perez Rua, J.M., Zhu, X., Ghanem, B., Martinez, B.: Low-fidelity video encoder optimization for temporal action localization. In: NeurIPS (2021)

    Google Scholar 

  54. Xu, M., Zhao, C., Rojas, D.S., Thabet, A., Ghanem, B.: G-TAD: sub-graph localization for temporal action detection. In: CVPR (2020)

    Google Scholar 

  55. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: CondConv: conditionally parameterized convolutions for efficient inference. In: NeurIPS (2019)

    Google Scholar 

  56. Yang, L., Han, Y., Chen, X., Song, S., Dai, J., Huang, G.: Resolution adaptive networks for efficient inference. In: CVPR (2020)

    Google Scholar 

  57. Yang, L., Peng, H., Zhang, D., Fu, J., Han, J.: Revisiting anchor mechanisms for temporal action localization. IEEE TIP 29, 8535–8548 (2020)

    Google Scholar 

  58. Yang, M., Chen, G., Zheng, Y.D., Lu, T., Wang, L.: BasicTAD: an astounding RGB-only baseline for temporal action detection. Comput. Vis. Image Underst. 232, 103692 (2023)

    Article  Google Scholar 

  59. Zhang, C.L., Wu, J., Li, Y.: ActionFormer: localizing moments of actions with transformers. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13664, pp. 492–510. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19772-7_29

    Chapter  Google Scholar 

  60. Zhao, C., Thabet, A.K., Ghanem, B.: Video self-stitching graph network for temporal action localization. In: ICCV (2021)

    Google Scholar 

  61. Zhao, H., Torralba, A., Torresani, L., Yan, Z.: HACS: human action clips and segments dataset for recognition and temporal localization. In: ICCV (2019)

    Google Scholar 

  62. Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detection with structured segment networks. In: ICCV (2017)

    Google Scholar 

  63. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU Loss: faster and better learning for bounding box regression. In: AAAI (2020)

    Google Scholar 

  64. Zhou, C., Loy, C.C., Dai, B.: Interpret vision transformers as convnets with dynamic convolutions. arXiv preprint arXiv:2309.10713 (2023)

  65. Zhu, Z., Tang, W., Wang, L., Zheng, N., Hua, G.: Enriching local and global contexts for temporal action localization. In: ICCV (2021)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by National Natural Science Foundation of China under Grants 62206215, China Postdoctoral Science Foundation under Grants 2022M712537, China National Postdoctoral Program for Innovative Talents BX2021241, and CCF-BAIDUOF 2021024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2327 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L. et al. (2025). DyFADet: Dynamic Feature Aggregation for Temporal Action Detection. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15104. Springer, Cham. https://doi.org/10.1007/978-3-031-72952-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72952-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72951-5

  • Online ISBN: 978-3-031-72952-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics