Skip to main content

Practical and Ethical Considerations for Generative AI in Medical Imaging

  • Conference paper
  • First Online:
Ethics and Fairness in Medical Imaging (FAIMI 2024, EPIMI 2024)

Abstract

Generative Artificial Intelligence (AI) has the potential to transform medicine. It is helpful to clinicians and radiologists for diagnosis, screening, treatment planning, interventions, and drug development. It benefits the clinical flow with real-time decision-support systems. While generative AI can potentially improve healthcare, it also introduces new ethical issues that require careful analysis and mitigation strategies. This work emphasizes the ethical aspects of generative AI in medical imaging, aiming to ensure that advancements in this field align with established ethical principles and societal values. We delve into the ethical implications surrounding bias, fairness, patient privacy, consent, transparency, explainability, intellectual property, and data ownership. Furthermore, we discuss regulations governing the use of synthetic medical data. To promote equitable application of these powerful tools, we also propose clear guidelines for promoting fairness, mitigating bias, and ensuring diversity within generative AI models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://openai.com/index/dall-e-3/.

  2. 2.

    https://www.apple.com/apple-intelligence/.

  3. 3.

    https://openai.com/index/hello-gpt-4o/.

  4. 4.

    https://claude.ai/new.

  5. 5.

    https://gemini.google.com/app.

References

  1. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in AI safety. arXiv preprint arXiv:1606.06565 (2016)

  2. Behera, M.R., Upadhyay, S., Shetty, S., Priyadarshini, S., Patel, P., Lee, K.F.: FedSyn: synthetic data generation using federated learning. arXiv preprint arXiv:2203.05931 (2022)

  3. Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)

  4. Carlini, N., et al.: Extracting training data from diffusion models. In: Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), pp. 5253–5270 (2023)

    Google Scholar 

  5. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374 (2021)

  6. Cheng, H.T., Thoppilan, R.: LaMDA: towards safe, grounded, and high-quality dialog models for everything. Google AI Blog (2022)

    Google Scholar 

  7. Chowdhery, A., et al.: Palm: scaling language modeling with pathways. J. Mach. Learn. Res. 24(240), 1–113 (2023)

    Google Scholar 

  8. Ferrara, E.: Fairness and bias in artificial intelligence: a brief survey of sources, impacts, and mitigation strategies. Sci 6(1), 3 (2023)

    Article  Google Scholar 

  9. Gerke, S., Minssen, T., Cohen, G.: Ethical and legal challenges of artificial intelligence-driven healthcare. In: Artificial intelligence in healthcare (2020)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2015). https://arxiv.org/abs/1412.6572

  12. Grote, T., Keeling, G.: On algorithmic fairness in medical practice. Camb. Q. Healthc. Ethics 31(1), 83–94 (2022)

    Article  Google Scholar 

  13. Guibas, J.T., Virdi, T.S., Li, P.S.: Synthetic medical images from dual generative adversarial networks. arXiv preprint arXiv:1709.01872 (2017)

  14. Hao, S., Han, W., Jiang, T., Li, Y., Wu, H., Zhong, C., Zhou, Z., Tang, H.: Synthetic data in AI: challenges, applications, and ethical implications. arXiv preprint arXiv:2401.01629 (2024)

  15. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  16. Ibarrola, F., Grace, K.: Measuring diversity in co-creative image generation. arXiv preprint arXiv:2403.13826 (2024)

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017). https://arxiv.org/abs/1412.6980

  18. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  19. Le Scao, T., et al.: Bloom: a 176b-parameter open-access multilingual language model (2022)

    Google Scholar 

  20. Li, Y., et al.: Competition-level code generation with alphacode. Science 378(6624), 1092–1097 (2022)

    Article  Google Scholar 

  21. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Google Scholar 

  22. Liu, X., Song, L., Liu, S., Zhang, Y.: A review of deep-learning-based medical image segmentation methods. Sustainability 13(3), 1224 (2021)

    Article  Google Scholar 

  23. Liu, Z., et al.: RadImageGAN–A Multi-modal Dataset-Scale Generative AI for Medical Imaging. arXiv preprint arXiv:2312.05953 (2023)

  24. Midjourney: Midjourney home. https://www.midjourney.com/home (2023). Accessed 24 Sep 2023

  25. Musalamadugu, T.S., Kannan, H.: Generative AI for medical imaging analysis and applications. Future Med. AI FMAI5 1(2) (2023)

    Google Scholar 

  26. OpenAI: Gpt-4. https://openai.com/research/gpt-4 (2023). Accessed 25 March 2024

  27. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  28. Rauniyar, A., et al.: Federated learning for medical applications: a taxonomy, current trends, challenges, and future research directions. IEEE IoT J. (2023)

    Google Scholar 

  29. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241 (2015)

    Google Scholar 

  31. Shen, A., Han, X., Cohn, T., Baldwin, T., Frermann, L.: Optimising equal opportunity fairness in model training. arXiv preprint arXiv:2205.02393 (2022)

  32. Shin, H.C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Third International Workshop, SASHIMI, pp. 1–11 (2018)

    Google Scholar 

  33. Stability AI: Stable diffusion SDXL-1 announcement. https://stability.ai/news/stable-diffusion-sdxl-1-announcement (2023). Accessed 24 Sep 2023

  34. Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  35. Uzunova, H., Schultz, S., Handels, H., Ehrhardt, J.: Unsupervised pathology detection in medical images using conditional variational autoencoders. Int. J. Comput. Assist. Radiol. Surg. 14, 451–461 (2019)

    Article  Google Scholar 

  36. Voigt, P., Von dem Bussche, A.: The General Data Protection Regulation (GDPR). Springer International Publishing 10(3152676), 10–5555 (2017)

    Google Scholar 

  37. Xin, B., et al.: Federated synthetic data generation with differential privacy. Neurocomputing 468, 1–10 (2022)

    Article  Google Scholar 

  38. Yu, M., et al.: How good are synthetic medical images? An empirical study with lung ultrasound. In: International Workshop on Simulation and Synthesis in Medical Imaging, pp. 75–85 (2023)

    Google Scholar 

Download references

Acknowledgements

This project is supported by NIH funding: R01-CA246704, R01-CA240639, U01-DK127384-02S1, and U01-CA268808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debesh Jha .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jha, D. et al. (2025). Practical and Ethical Considerations for Generative AI in Medical Imaging. In: Puyol-Antón, E., et al. Ethics and Fairness in Medical Imaging. FAIMI EPIMI 2024 2024. Lecture Notes in Computer Science, vol 15198. Springer, Cham. https://doi.org/10.1007/978-3-031-72787-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72787-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72786-3

  • Online ISBN: 978-3-031-72787-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics