Abstract
Generative Artificial Intelligence (AI) has the potential to transform medicine. It is helpful to clinicians and radiologists for diagnosis, screening, treatment planning, interventions, and drug development. It benefits the clinical flow with real-time decision-support systems. While generative AI can potentially improve healthcare, it also introduces new ethical issues that require careful analysis and mitigation strategies. This work emphasizes the ethical aspects of generative AI in medical imaging, aiming to ensure that advancements in this field align with established ethical principles and societal values. We delve into the ethical implications surrounding bias, fairness, patient privacy, consent, transparency, explainability, intellectual property, and data ownership. Furthermore, we discuss regulations governing the use of synthetic medical data. To promote equitable application of these powerful tools, we also propose clear guidelines for promoting fairness, mitigating bias, and ensuring diversity within generative AI models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in AI safety. arXiv preprint arXiv:1606.06565 (2016)
Behera, M.R., Upadhyay, S., Shetty, S., Priyadarshini, S., Patel, P., Lee, K.F.: FedSyn: synthetic data generation using federated learning. arXiv preprint arXiv:2203.05931 (2022)
Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)
Carlini, N., et al.: Extracting training data from diffusion models. In: Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), pp. 5253–5270 (2023)
Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374 (2021)
Cheng, H.T., Thoppilan, R.: LaMDA: towards safe, grounded, and high-quality dialog models for everything. Google AI Blog (2022)
Chowdhery, A., et al.: Palm: scaling language modeling with pathways. J. Mach. Learn. Res. 24(240), 1–113 (2023)
Ferrara, E.: Fairness and bias in artificial intelligence: a brief survey of sources, impacts, and mitigation strategies. Sci 6(1), 3 (2023)
Gerke, S., Minssen, T., Cohen, G.: Ethical and legal challenges of artificial intelligence-driven healthcare. In: Artificial intelligence in healthcare (2020)
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2015). https://arxiv.org/abs/1412.6572
Grote, T., Keeling, G.: On algorithmic fairness in medical practice. Camb. Q. Healthc. Ethics 31(1), 83–94 (2022)
Guibas, J.T., Virdi, T.S., Li, P.S.: Synthetic medical images from dual generative adversarial networks. arXiv preprint arXiv:1709.01872 (2017)
Hao, S., Han, W., Jiang, T., Li, Y., Wu, H., Zhong, C., Zhou, Z., Tang, H.: Synthetic data in AI: challenges, applications, and ethical implications. arXiv preprint arXiv:2401.01629 (2024)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Ibarrola, F., Grace, K.: Measuring diversity in co-creative image generation. arXiv preprint arXiv:2403.13826 (2024)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017). https://arxiv.org/abs/1412.6980
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Le Scao, T., et al.: Bloom: a 176b-parameter open-access multilingual language model (2022)
Li, Y., et al.: Competition-level code generation with alphacode. Science 378(6624), 1092–1097 (2022)
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
Liu, X., Song, L., Liu, S., Zhang, Y.: A review of deep-learning-based medical image segmentation methods. Sustainability 13(3), 1224 (2021)
Liu, Z., et al.: RadImageGAN–A Multi-modal Dataset-Scale Generative AI for Medical Imaging. arXiv preprint arXiv:2312.05953 (2023)
Midjourney: Midjourney home. https://www.midjourney.com/home (2023). Accessed 24 Sep 2023
Musalamadugu, T.S., Kannan, H.: Generative AI for medical imaging analysis and applications. Future Med. AI FMAI5 1(2) (2023)
OpenAI: Gpt-4. https://openai.com/research/gpt-4 (2023). Accessed 25 March 2024
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)
Rauniyar, A., et al.: Federated learning for medical applications: a taxonomy, current trends, challenges, and future research directions. IEEE IoT J. (2023)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241 (2015)
Shen, A., Han, X., Cohn, T., Baldwin, T., Frermann, L.: Optimising equal opportunity fairness in model training. arXiv preprint arXiv:2205.02393 (2022)
Shin, H.C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Third International Workshop, SASHIMI, pp. 1–11 (2018)
Stability AI: Stable diffusion SDXL-1 announcement. https://stability.ai/news/stable-diffusion-sdxl-1-announcement (2023). Accessed 24 Sep 2023
Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)
Uzunova, H., Schultz, S., Handels, H., Ehrhardt, J.: Unsupervised pathology detection in medical images using conditional variational autoencoders. Int. J. Comput. Assist. Radiol. Surg. 14, 451–461 (2019)
Voigt, P., Von dem Bussche, A.: The General Data Protection Regulation (GDPR). Springer International Publishing 10(3152676), 10–5555 (2017)
Xin, B., et al.: Federated synthetic data generation with differential privacy. Neurocomputing 468, 1–10 (2022)
Yu, M., et al.: How good are synthetic medical images? An empirical study with lung ultrasound. In: International Workshop on Simulation and Synthesis in Medical Imaging, pp. 75–85 (2023)
Acknowledgements
This project is supported by NIH funding: R01-CA246704, R01-CA240639, U01-DK127384-02S1, and U01-CA268808.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Conflicts of Interest
The authors have no relevant financial or non-financial interests to disclose.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jha, D. et al. (2025). Practical and Ethical Considerations for Generative AI in Medical Imaging. In: Puyol-Antón, E., et al. Ethics and Fairness in Medical Imaging. FAIMI EPIMI 2024 2024. Lecture Notes in Computer Science, vol 15198. Springer, Cham. https://doi.org/10.1007/978-3-031-72787-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-72787-0_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72786-3
Online ISBN: 978-3-031-72787-0
eBook Packages: Computer ScienceComputer Science (R0)