Abstract
Transcription-only Supervised Text Spotting aims to learn text spotters relying only on transcriptions but no text boundaries for supervision, thus eliminating expensive boundary annotation. The crux of this task lies in locating each transcription in scene text images without location annotations. In this work, we formulate this challenging problem as a Weakly Supervised Cross-modality Contrastive Learning problem, and design a simple yet effective model dubbed WeCromCL that is able to detect each transcription in a scene image in a weakly supervised manner. Unlike typical methods for cross-modality contrastive learning that focus on modeling the holistic semantic correlation between an entire image and a text description, our WeCromCL conducts atomistic contrastive learning to model the character-wise appearance consistency between a text transcription and its correlated region in a scene image to detect an anchor point for the transcription in a weakly supervised manner. The detected anchor points by WeCromCL are further used as pseudo location labels to guide the learning of text spotting. Extensive experiments on four challenging benchmarks demonstrate the superior performance of our model over other methods. Code will be released.
J. Wu, Z. Fang and P. Lyu—Authors contribute equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Ch’ng, C.K., Chan, C.S.: Total-text: a comprehensive dataset for scene text detection and recognition. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). vol. 1. IEEE (2017)
Duan, J., et al.: Multi-modal alignment using representation codebook. In: CVPR (2022)
Fang, S., Mao, Z., Xie, H., Wang, Y., Yan, C., Zhang, Y.: ABINet++: autonomous, bidirectional and iterative language modeling for scene text spotting. IEEE Trans. Pattern Anal. Mach. Intell. 45(6), 7123–7141 (2022)
Feng, W., He, W., Yin, F., Zhang, X.Y., Liu, C.L.: TextDragon: an end-to-end framework for arbitrary shaped text spotting. In: ICCV (2019)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)
Huang, M., et al.: EstextSpotter: towards better scene text spotting with explicit synergy in transformer. In: ICCV (2023)
Huo, Y et al.: WenLan: bridging vision and language by large-scale multi-modal pre-training. arXiv preprint arXiv:2103.06561 (2021)
Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. Int. J. Comput. Vision 116(1), 1–20 (2016)
Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: ICML. PMLR (2021)
Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: 2015 13th international conference on document analysis and recognition (ICDAR). IEEE (2015)
Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: 2013 12th International Conference on Document Analysis and Recognition. IEEE (2013)
Kittenplon, Y., Lavi, I., Fogel, S., Bar, Y., Manmatha, R., Perona, P.: Towards weakly-supervised text spotting using a multi-task transformer. In: CVPR (2022)
Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before Fuse: vision and language representation learning with momentum distillation. NeurIPS 34, 9694–9705 (2021)
Li, W., et al.: UNIMO: towards unified-modal understanding and generation via cross-modal contrastive learning. arXiv preprint arXiv:2012.15409 (2020)
Liao, M., Lyu, P., He, M., Yao, C., Wu, W., Bai, X.: Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. IEEE Trans. Pattern Anal. and Mach. Intell. 43(2), 532–548 (2019)
Liao, M., Pang, G., Huang, J., Hassner, T., Bai, X.: Mask TextSpotter V3: segmentation Proposal Network for Robust Scene Text Spotting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI, pp. 706–722. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_41
Liao, M., Shi, B., Bai, X.: TextBoxes++: a single-shot oriented scene text detector. IEEE Trans. Image Process. 27(8), 3676–3690 (2018)
Liao, M., Shi, B., Bai, X., Wang, X., Liu, W.: TextBoxes: a fast text detector with a single deep neural network. In: AAAI (2017)
Liu, Y., Chen, H., Shen, C., He, T., Jin, L., Wang, L.: ABCNet: real-time scene text spotting with adaptive Bezier-curve network. In: CVPR (2020)
Liu, Y., Jin, L., Zhang, S., Luo, C., Zhang, S.: Curved scene text detection via transverse and longitudinal sequence connection. Pattern Recogn. 90, 337–345 (2019)
Liu, Y., et al.: ABCNet v2: adaptive Bezier-curve network for real-time end-to-end text spotting. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 8048–8064 (2021)
Liu, Y., et al.: SPTS v2: single-point scene text spotting. arXiv preprint arXiv:2301.01635 (2023)
Lyu, P., Liao, M., Yao, C., Wu, W., Bai, X.: Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. In: ECCV (2018)
Nayef, N., et al.: ICDAR2017 robust reading challenge on multi-lingual scene text detection and script identification-RRC-MLT. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). vol. 1. IEEE (2017)
Peng, D., et al.: SPTS: single-point text spotting. In: ACM MM (2022)
Qiao, L., et al.: MANGO: a mask attention guided one-stage scene text spotter. In: AAAI. vol. 35 (2021)
Qiao, L., et al.: Text Perceptron: towards end-to-end arbitrary-shaped text spotting. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34 (2020)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML. PMLR (2021)
Song, S., et al.: Vision-language pre-training for boosting scene text detectors. In: CVPR (2022)
Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: CVPR (2020)
Tang, J., Qiao, S., Cui, B., Ma, Y., Zhang, S., Kanoulas, D.: You can even annotate text with voice: transcription-only-supervised text spotting. In: ACM MM (2022)
Wang, H., et al.: All You Need Is Boundary: toward arbitrary-shaped text spotting. In: AAAI. vol. 34 (2020)
Wang, W., et al.: PAN++: towards efficient and accurate end-to-end spotting of arbitrarily-shaped text. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5349–5367 (2021)
Wu, J., Lyu, P., Lu, G., Zhang, C., Pei, W.: Single shot self-reliant scene text spotter by decoupled yet collaborative detection and recognition (2023)
Wu, J., Lyu, P., Lu, G., Zhang, C., Yao, K., Pei, W.: Decoupling recognition from detection: single shot self-reliant scene text spotter. In: ACM MM (2022)
Xue, C., Zhang, W., Hao, Yu., Lu, S., Torr, P.H.S., Bai, S.: Language matters: a weakly supervised vision-language pre-training approach for scene text detection and spotting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVIII, pp. 284–302. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_17
Xue, C., Zhang, W., Hao, Yu., Lu, S., Torr, P.H.S., Bai, S.: Language matters: a weakly supervised vision-language pre-training approach for scene text detection and spotting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVIII, pp. 284–302. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_17
Yang, J., et al.: Vision-language pre-training with triple contrastive learning. In: CVPR (2022)
Ye, M., et al.: DeepSolo: let transformer decoder with explicit points solo for text spotting. In: CVPR (2023)
Yu, W., Liu, Y., Hua, W., Jiang, D., Ren, B., Bai, X.: Turning a CLIP model into a scene text detector. In: CVPR (2023)
Zhang, X., Su, Y., Tripathi, S., Tu, Z.: Text spotting transformers. In: CVPR (2022)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China (U2013210, 62372133), in part by Shenzhen Fundamental Research Program (Grant NO. JCYJ20220818102415032), in part by Guangdong Basic and Applied Basic Research Foundation (2024A1515011706), in part by the Shenzhen Key Technical Project (NO. JSGG20220831092805009, JSGG20201103153802006, KJZD20230923115117033).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, J. et al. (2025). WeCromCL: Weakly Supervised Cross-Modality Contrastive Learning for Transcription-Only Supervised Text Spotting. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15089. Springer, Cham. https://doi.org/10.1007/978-3-031-72751-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-72751-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72750-4
Online ISBN: 978-3-031-72751-1
eBook Packages: Computer ScienceComputer Science (R0)