Skip to main content

WeCromCL: Weakly Supervised Cross-Modality Contrastive Learning for Transcription-Only Supervised Text Spotting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Transcription-only Supervised Text Spotting aims to learn text spotters relying only on transcriptions but no text boundaries for supervision, thus eliminating expensive boundary annotation. The crux of this task lies in locating each transcription in scene text images without location annotations. In this work, we formulate this challenging problem as a Weakly Supervised Cross-modality Contrastive Learning problem, and design a simple yet effective model dubbed WeCromCL that is able to detect each transcription in a scene image in a weakly supervised manner. Unlike typical methods for cross-modality contrastive learning that focus on modeling the holistic semantic correlation between an entire image and a text description, our WeCromCL conducts atomistic contrastive learning to model the character-wise appearance consistency between a text transcription and its correlated region in a scene image to detect an anchor point for the transcription in a weakly supervised manner. The detected anchor points by WeCromCL are further used as pseudo location labels to guide the learning of text spotting. Extensive experiments on four challenging benchmarks demonstrate the superior performance of our model over other methods. Code will be released.

J. Wu, Z. Fang and P. Lyu—Authors contribute equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  2. Ch’ng, C.K., Chan, C.S.: Total-text: a comprehensive dataset for scene text detection and recognition. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). vol. 1. IEEE (2017)

    Google Scholar 

  3. Duan, J., et al.: Multi-modal alignment using representation codebook. In: CVPR (2022)

    Google Scholar 

  4. Fang, S., Mao, Z., Xie, H., Wang, Y., Yan, C., Zhang, Y.: ABINet++: autonomous, bidirectional and iterative language modeling for scene text spotting. IEEE Trans. Pattern Anal. Mach. Intell. 45(6), 7123–7141 (2022)

    Google Scholar 

  5. Feng, W., He, W., Yin, F., Zhang, X.Y., Liu, C.L.: TextDragon: an end-to-end framework for arbitrary shaped text spotting. In: ICCV (2019)

    Google Scholar 

  6. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  7. Huang, M., et al.: EstextSpotter: towards better scene text spotting with explicit synergy in transformer. In: ICCV (2023)

    Google Scholar 

  8. Huo, Y et al.: WenLan: bridging vision and language by large-scale multi-modal pre-training. arXiv preprint arXiv:2103.06561 (2021)

  9. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. Int. J. Comput. Vision 116(1), 1–20 (2016)

    Google Scholar 

  10. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: ICML. PMLR (2021)

    Google Scholar 

  11. Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: 2015 13th international conference on document analysis and recognition (ICDAR). IEEE (2015)

    Google Scholar 

  12. Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: 2013 12th International Conference on Document Analysis and Recognition. IEEE (2013)

    Google Scholar 

  13. Kittenplon, Y., Lavi, I., Fogel, S., Bar, Y., Manmatha, R., Perona, P.: Towards weakly-supervised text spotting using a multi-task transformer. In: CVPR (2022)

    Google Scholar 

  14. Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before Fuse: vision and language representation learning with momentum distillation. NeurIPS 34, 9694–9705 (2021)

    Google Scholar 

  15. Li, W., et al.: UNIMO: towards unified-modal understanding and generation via cross-modal contrastive learning. arXiv preprint arXiv:2012.15409 (2020)

  16. Liao, M., Lyu, P., He, M., Yao, C., Wu, W., Bai, X.: Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. IEEE Trans. Pattern Anal. and Mach. Intell. 43(2), 532–548 (2019)

    Google Scholar 

  17. Liao, M., Pang, G., Huang, J., Hassner, T., Bai, X.: Mask TextSpotter V3: segmentation Proposal Network for Robust Scene Text Spotting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI, pp. 706–722. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_41

    Chapter  Google Scholar 

  18. Liao, M., Shi, B., Bai, X.: TextBoxes++: a single-shot oriented scene text detector. IEEE Trans. Image Process. 27(8), 3676–3690 (2018)

    Google Scholar 

  19. Liao, M., Shi, B., Bai, X., Wang, X., Liu, W.: TextBoxes: a fast text detector with a single deep neural network. In: AAAI (2017)

    Google Scholar 

  20. Liu, Y., Chen, H., Shen, C., He, T., Jin, L., Wang, L.: ABCNet: real-time scene text spotting with adaptive Bezier-curve network. In: CVPR (2020)

    Google Scholar 

  21. Liu, Y., Jin, L., Zhang, S., Luo, C., Zhang, S.: Curved scene text detection via transverse and longitudinal sequence connection. Pattern Recogn. 90, 337–345 (2019)

    Google Scholar 

  22. Liu, Y., et al.: ABCNet v2: adaptive Bezier-curve network for real-time end-to-end text spotting. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 8048–8064 (2021)

    Google Scholar 

  23. Liu, Y., et al.: SPTS v2: single-point scene text spotting. arXiv preprint arXiv:2301.01635 (2023)

  24. Lyu, P., Liao, M., Yao, C., Wu, W., Bai, X.: Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. In: ECCV (2018)

    Google Scholar 

  25. Nayef, N., et al.: ICDAR2017 robust reading challenge on multi-lingual scene text detection and script identification-RRC-MLT. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). vol. 1. IEEE (2017)

    Google Scholar 

  26. Peng, D., et al.: SPTS: single-point text spotting. In: ACM MM (2022)

    Google Scholar 

  27. Qiao, L., et al.: MANGO: a mask attention guided one-stage scene text spotter. In: AAAI. vol. 35 (2021)

    Google Scholar 

  28. Qiao, L., et al.: Text Perceptron: towards end-to-end arbitrary-shaped text spotting. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34 (2020)

    Google Scholar 

  29. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML. PMLR (2021)

    Google Scholar 

  30. Song, S., et al.: Vision-language pre-training for boosting scene text detectors. In: CVPR (2022)

    Google Scholar 

  31. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: CVPR (2020)

    Google Scholar 

  32. Tang, J., Qiao, S., Cui, B., Ma, Y., Zhang, S., Kanoulas, D.: You can even annotate text with voice: transcription-only-supervised text spotting. In: ACM MM (2022)

    Google Scholar 

  33. Wang, H., et al.: All You Need Is Boundary: toward arbitrary-shaped text spotting. In: AAAI. vol. 34 (2020)

    Google Scholar 

  34. Wang, W., et al.: PAN++: towards efficient and accurate end-to-end spotting of arbitrarily-shaped text. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5349–5367 (2021)

    Google Scholar 

  35. Wu, J., Lyu, P., Lu, G., Zhang, C., Pei, W.: Single shot self-reliant scene text spotter by decoupled yet collaborative detection and recognition (2023)

    Google Scholar 

  36. Wu, J., Lyu, P., Lu, G., Zhang, C., Yao, K., Pei, W.: Decoupling recognition from detection: single shot self-reliant scene text spotter. In: ACM MM (2022)

    Google Scholar 

  37. Xue, C., Zhang, W., Hao, Yu., Lu, S., Torr, P.H.S., Bai, S.: Language matters: a weakly supervised vision-language pre-training approach for scene text detection and spotting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVIII, pp. 284–302. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_17

    Chapter  Google Scholar 

  38. Xue, C., Zhang, W., Hao, Yu., Lu, S., Torr, P.H.S., Bai, S.: Language matters: a weakly supervised vision-language pre-training approach for scene text detection and spotting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVIII, pp. 284–302. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_17

    Chapter  Google Scholar 

  39. Yang, J., et al.: Vision-language pre-training with triple contrastive learning. In: CVPR (2022)

    Google Scholar 

  40. Ye, M., et al.: DeepSolo: let transformer decoder with explicit points solo for text spotting. In: CVPR (2023)

    Google Scholar 

  41. Yu, W., Liu, Y., Hua, W., Jiang, D., Ren, B., Bai, X.: Turning a CLIP model into a scene text detector. In: CVPR (2023)

    Google Scholar 

  42. Zhang, X., Su, Y., Tripathi, S., Tu, Z.: Text spotting transformers. In: CVPR (2022)

    Google Scholar 

  43. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (U2013210, 62372133), in part by Shenzhen Fundamental Research Program (Grant NO. JCYJ20220818102415032), in part by Guangdong Basic and Applied Basic Research Foundation (2024A1515011706), in part by the Shenzhen Key Technical Project (NO. JSGG20220831092805009, JSGG20201103153802006, KJZD20230923115117033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Pei .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2802 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J. et al. (2025). WeCromCL: Weakly Supervised Cross-Modality Contrastive Learning for Transcription-Only Supervised Text Spotting. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15089. Springer, Cham. https://doi.org/10.1007/978-3-031-72751-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72751-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72750-4

  • Online ISBN: 978-3-031-72751-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics