Abstract
High-fidelity modeling of the pulmonary airway tree from CT scans is critical to preoperative planning. However, the granularity of CT scan resolutions and the intricate topologies limit the accuracy of manual or deep-learning-based delineation of airway structures, resulting in coarse representation accompanied by spike-like noises and disconnectivity issues. To address these challenges, we introduce a Deep Geometric Correspondence Implicit (DGCI) network that implicitly models airway tree structures in the continuous space rather than discrete voxel grids. DGCI first explores the intrinsic topological features shared within different airway cases on top of implicit neural representation (INR). Specifically, we establish a reversible correspondence flow to constrain the feature space of training shapes. Moreover, implicit geometric regularization is utilized to promote a smooth and high-fidelity representation of fine-scaled airway structures. By transcending voxel-based representation, DGCI acquires topological insights and integrates geometric regularization into INR, generating airway tree structures with state-of-the-art topological fidelity. Detailed evaluation results on the public dataset demonstrated the superiority of the DGCI in the scalable delineation of airways and downstream applications. Source codes can be found at: https://github.com/EndoluminalSurgicalVision-IMR/DGCI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Attali, D., Boissonnat, J.D., Edelsbrunner, H.: Stability and computation of medial axes-a state-of-the-art report. In: Möller, T., Hamann, B., Russell, R.D. (eds.) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization, pp. 109–125. Springer, Heidelberg (2009). https://doi.org/10.1007/b106657_6
Charbonnier, J.P., Van Rikxoort, E.M., Setio, A.A., Schaefer-Prokop, C.M., van Ginneken, B., Ciompi, F.: Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med. Image Anal. 36, 52–60 (2017)
Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Visual Comput. Graphics 13(3), 530 (2007)
David, H., Andrew, M.D., Quoc, V.L.: Hypernetworks. In: Proceedings of International Conference on Learning Representations (2017)
Deng, Y., Yang, J., Tong, X.: Deformed implicit field: modeling 3D shapes with learned dense correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10286–10296 (2021)
Field, D.A.: Laplacian smoothing and Delaunay triangulations. Commun. Appl. Numer. Methods 4(6), 709–712 (1988)
Garcia-Uceda Juarez, A., Selvan, R., Saghir, Z., de Bruijne, M.: A joint 3D UNet-graph neural network-based method for airway segmentation from chest CTs. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 583–591. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_67
Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: International Conference on Machine Learning, pp. 3789–3799. PMLR (2020)
Jin, D., Xu, Z., Harrison, A.P., George, K., Mollura, D.J.: 3D convolutional neural networks with graph refinement for airway segmentation using incomplete data labels. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 141–149. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_17
Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-d medial surface axis thinning algorithms. CVGIP Graph. Models Image Process. 56(6), 462–478 (1994)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Seminal Graphics: Pioneering Efforts that Shaped the Field, pp. 347–353 (1998)
Luo, F., Herth, F.J., et al.: Performing bronchoscopy in times of the COVID-19 pandemic: practice statement from an international expert panel. Respiration 99(5), 417–422 (2020)
Meng, Q., Roth, H.R., Kitasaka, T., Oda, M., Ueno, J., Mori, K.: Tracking and segmentation of the airways in chest CT using a fully convolutional network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017, Part II. LNCS, vol. 10434, pp. 198–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_23
Menten, M.J., et al.: A skeletonization algorithm for gradient-based optimization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21394–21403 (2023)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)
Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks, Part III. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31
Qin, Y.: Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT. IEEE Trans. Med. Imaging 40(6), 1603–1617 (2021)
Reynisson, P.J., et al.: Navigated bronchoscopy: a technical review. J. Bronchol. Interv. Pulmonol. 21(3), 242–264 (2014)
Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021)
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)
Wan, I.Y., et al.: Bronchoscopic lung volume reduction for end-stage emphysema: report on the first 98 patients. Chest 129(3), 518–526 (2006)
Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: PoinTr: diverse point cloud completion with geometry-aware transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12498–12507 (2021)
Zhang, M., Gu, Y.: Towards connectivity-aware pulmonary airway segmentation. IEEE J. Biomed. Health Inform. 28, 321–332 (2023)
Zhang, M., et al.: Multi-site, multi-domain airway tree modeling. Med. Image Anal. 90, 102957 (2023)
Zhao, M., et al.: GDDS: pulmonary bronchioles segmentation with group deep dense supervision. arXiv preprint arXiv:2303.09212 (2023)
Zhao, T., Yin, Z., Wang, J., Gao, D., Chen, Y., Mao, Y.: Bronchus segmentation and classification by neural networks and linear programming. In: Shen, D., et al. (eds.) MICCAI 2019, Part VI. LNCS, vol. 11769, pp. 230–239. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_26
Zheng, H., et al.: Alleviating class-wise gradient imbalance for pulmonary airway segmentation. IEEE Trans. Med. Imaging 40(9), 2452–2462 (2021)
Acknowledgments.
This work was supported in part by National Key R&D Program of China (Grant Number: 2022ZD0212400), Natural Science Foundation of China (Grant Number: 62373243) and the Science and Technology Commission of Shanghai Municipality, China (Grant Number: 20DZ2220400), Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX0102).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, M., Zhang, H., You, X., Yang, GZ., Gu, Y. (2024). Implicit Representation Embraces Challenging Attributes of Pulmonary Airway Tree Structures. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_51
Download citation
DOI: https://doi.org/10.1007/978-3-031-72378-0_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72377-3
Online ISBN: 978-3-031-72378-0
eBook Packages: Computer ScienceComputer Science (R0)