Skip to main content

Implicit Representation Embraces Challenging Attributes of Pulmonary Airway Tree Structures

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15001))

  • 2743 Accesses

Abstract

High-fidelity modeling of the pulmonary airway tree from CT scans is critical to preoperative planning. However, the granularity of CT scan resolutions and the intricate topologies limit the accuracy of manual or deep-learning-based delineation of airway structures, resulting in coarse representation accompanied by spike-like noises and disconnectivity issues. To address these challenges, we introduce a Deep Geometric Correspondence Implicit (DGCI) network that implicitly models airway tree structures in the continuous space rather than discrete voxel grids. DGCI first explores the intrinsic topological features shared within different airway cases on top of implicit neural representation (INR). Specifically, we establish a reversible correspondence flow to constrain the feature space of training shapes. Moreover, implicit geometric regularization is utilized to promote a smooth and high-fidelity representation of fine-scaled airway structures. By transcending voxel-based representation, DGCI acquires topological insights and integrates geometric regularization into INR, generating airway tree structures with state-of-the-art topological fidelity. Detailed evaluation results on the public dataset demonstrated the superiority of the DGCI in the scalable delineation of airways and downstream applications. Source codes can be found at: https://github.com/EndoluminalSurgicalVision-IMR/DGCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Attali, D., Boissonnat, J.D., Edelsbrunner, H.: Stability and computation of medial axes-a state-of-the-art report. In: Möller, T., Hamann, B., Russell, R.D. (eds.) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization, pp. 109–125. Springer, Heidelberg (2009). https://doi.org/10.1007/b106657_6

    Chapter  Google Scholar 

  2. Charbonnier, J.P., Van Rikxoort, E.M., Setio, A.A., Schaefer-Prokop, C.M., van Ginneken, B., Ciompi, F.: Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med. Image Anal. 36, 52–60 (2017)

    Article  Google Scholar 

  3. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Visual Comput. Graphics 13(3), 530 (2007)

    Article  Google Scholar 

  4. David, H., Andrew, M.D., Quoc, V.L.: Hypernetworks. In: Proceedings of International Conference on Learning Representations (2017)

    Google Scholar 

  5. Deng, Y., Yang, J., Tong, X.: Deformed implicit field: modeling 3D shapes with learned dense correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10286–10296 (2021)

    Google Scholar 

  6. Field, D.A.: Laplacian smoothing and Delaunay triangulations. Commun. Appl. Numer. Methods 4(6), 709–712 (1988)

    Article  Google Scholar 

  7. Garcia-Uceda Juarez, A., Selvan, R., Saghir, Z., de Bruijne, M.: A joint 3D UNet-graph neural network-based method for airway segmentation from chest CTs. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 583–591. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_67

    Chapter  Google Scholar 

  8. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: International Conference on Machine Learning, pp. 3789–3799. PMLR (2020)

    Google Scholar 

  9. Jin, D., Xu, Z., Harrison, A.P., George, K., Mollura, D.J.: 3D convolutional neural networks with graph refinement for airway segmentation using incomplete data labels. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 141–149. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_17

    Chapter  Google Scholar 

  10. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-d medial surface axis thinning algorithms. CVGIP Graph. Models Image Process. 56(6), 462–478 (1994)

    Google Scholar 

  11. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Seminal Graphics: Pioneering Efforts that Shaped the Field, pp. 347–353 (1998)

    Google Scholar 

  12. Luo, F., Herth, F.J., et al.: Performing bronchoscopy in times of the COVID-19 pandemic: practice statement from an international expert panel. Respiration 99(5), 417–422 (2020)

    Article  Google Scholar 

  13. Meng, Q., Roth, H.R., Kitasaka, T., Oda, M., Ueno, J., Mori, K.: Tracking and segmentation of the airways in chest CT using a fully convolutional network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017, Part II. LNCS, vol. 10434, pp. 198–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_23

    Chapter  Google Scholar 

  14. Menten, M.J., et al.: A skeletonization algorithm for gradient-based optimization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21394–21403 (2023)

    Google Scholar 

  15. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  16. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  17. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks, Part III. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31

    Chapter  Google Scholar 

  18. Qin, Y.: Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT. IEEE Trans. Med. Imaging 40(6), 1603–1617 (2021)

    Article  Google Scholar 

  19. Reynisson, P.J., et al.: Navigated bronchoscopy: a technical review. J. Bronchol. Interv. Pulmonol. 21(3), 242–264 (2014)

    Article  Google Scholar 

  20. Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021)

    Google Scholar 

  21. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)

    Google Scholar 

  22. Wan, I.Y., et al.: Bronchoscopic lung volume reduction for end-stage emphysema: report on the first 98 patients. Chest 129(3), 518–526 (2006)

    Article  Google Scholar 

  23. Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: PoinTr: diverse point cloud completion with geometry-aware transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12498–12507 (2021)

    Google Scholar 

  24. Zhang, M., Gu, Y.: Towards connectivity-aware pulmonary airway segmentation. IEEE J. Biomed. Health Inform. 28, 321–332 (2023)

    Article  Google Scholar 

  25. Zhang, M., et al.: Multi-site, multi-domain airway tree modeling. Med. Image Anal. 90, 102957 (2023)

    Article  Google Scholar 

  26. Zhao, M., et al.: GDDS: pulmonary bronchioles segmentation with group deep dense supervision. arXiv preprint arXiv:2303.09212 (2023)

  27. Zhao, T., Yin, Z., Wang, J., Gao, D., Chen, Y., Mao, Y.: Bronchus segmentation and classification by neural networks and linear programming. In: Shen, D., et al. (eds.) MICCAI 2019, Part VI. LNCS, vol. 11769, pp. 230–239. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_26

    Chapter  Google Scholar 

  28. Zheng, H., et al.: Alleviating class-wise gradient imbalance for pulmonary airway segmentation. IEEE Trans. Med. Imaging 40(9), 2452–2462 (2021)

    Article  Google Scholar 

Download references

Acknowledgments.

This work was supported in part by National Key R&D Program of China (Grant Number: 2022ZD0212400), Natural Science Foundation of China (Grant Number: 62373243) and the Science and Technology Commission of Shanghai Municipality, China (Grant Number: 20DZ2220400), Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX0102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Gu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, M., Zhang, H., You, X., Yang, GZ., Gu, Y. (2024). Implicit Representation Embraces Challenging Attributes of Pulmonary Airway Tree Structures. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics