Skip to main content

Mixed Integer Linear Programming for Discrete Sampling Scheme Design in Diffusion MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15002))

  • 2115 Accesses

Abstract

In diffusion MRI (dMRI), a uniform single or multiple shell sampling scheme is typically required for data acquisition in \(\textbf{q}\)-space, because uniform spherical sampling offers the advantage of capturing more information using fewer samples, leading to superior reconstruction results. Uniform sampling problems can be categorized into continuous and discrete types. While most existing sampling methods focus on the continuous problem that is to design spherical samples continuously from single or multiple shells, this paper primarily investigates two discrete optimization problems, i.e., 1) optimizing the polarity of an existing scheme (P-P), and 2) optimizing the ordering of an existing scheme (P-O). Existing approaches for these two problems mainly rely on greedy algorithms, simulated annealing, and exhaustive search, which fail to obtain global optima within a reasonable timeframe. We propose several Mixed Integer Linear Programming (MILP) based methods to address these problems. To the best of our knowledge, this is the first work that solves these two discrete problems using MILP to obtain global optimal or sufficiently good solutions in 10 min. Experiments performed on single and multiple shells demonstrate that our MILP methods can achieve larger separation angles and lower electrostatic energy, resulting better reconstruction results, compared with existing approaches in commonly used software (i.e., CAMINO and MRtrix).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy.

  2. 2.

    https://mrtrix.readthedocs.io/en/dev/reference/commands/dirflip.html.

  3. 3.

    http://camino.cs.ucl.ac.uk/index.php?n=Man.Orderpoints.

  4. 4.

    https://mrtrix.readthedocs.io/en/dev/reference/commands/dirorder.html.

  5. 5.

    https://en.wikipedia.org/wiki/Packing_density.

References

  1. Basser, P., Mattiello, J., LeBihan, D.: Mr diffusion tensor spectroscopy and imaging. Biophysical Journal 66(1), 259–267 (1994)

    Article  Google Scholar 

  2. Caruyer, E., Cheng, J., Lenglet, C., Sapiro, G., Jiang, T., Deriche, R.: Optimal Design of Multiple Q-shells experiments for Diffusion MRI. In: MICCAI Workshop on Computational Diffusion MRI (CDMRI’11). pp. 45–53 (2011)

    Google Scholar 

  3. Cheng, J., Deriche, R., Jiang, T., Shen, D., Yap, P.T.: Non-Negative Spherical Deconvolution (NNSD) for estimation of fiber Orientation Distribution Function in single-/multi-shell diffusion MRI. NeuroImage 101, 750–764 (2014)

    Article  Google Scholar 

  4. Cheng, J., Shen, D., Yap, P.T., Basser, P.J.: Single-and multiple-shell uniform sampling schemes for diffusion mri using spherical codes. IEEE transactions on medical imaging 37(1), 185–199 (2017)

    Article  Google Scholar 

  5. Cook, P., Bai, Y., Nedjati-Gilani, S., Seunarine, K., Hall, M., Parker, G., Alexander, D.: Camino: Open-source diffusion-mri reconstruction and processing. Proc. Intl. Soc. Magn. Reson. Med. 14 (11 2005)

    Google Scholar 

  6. Cook, P.A., Symms, M., Boulby, P.A., Alexander, D.C.: Optimal acquisition orders of diffusion-weighted mri measurements. Journal of Magnetic Resonance Imaging 25(5), 1051–1058 (2007)

    Article  Google Scholar 

  7. Deriche, R., Calder, J., Descoteaux, M.: Optimal real-time q-ball imaging using regularized kalman filtering with incremental orientation sets. Medical Image Anal. 13(4), 564–579 (2009)

    Article  Google Scholar 

  8. Dubois, J., Poupon, C., Cointepas, Y., Lethimonnier, F., Bihan, D.: Diffusion gradient orientation schemes for dti acquisitions with unquiet subjects (01 2004)

    Google Scholar 

  9. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023), https://www.gurobi.com

  10. Jones, D., Horsfield, M., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magnetic resonance in medicine 42(3), 515–525 (September 1999)

    Google Scholar 

  11. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L.R., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernández, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Essen, D.C.V., Ugurbil, K., Behrens, T.E.J.: Advances in diffusion MRI acquisition and processing in the human connectome project. NeuroImage 80, 125–143 (2013)

    Article  Google Scholar 

  12. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  13. Tournier, J.D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C.H., Connelly, A.: Mrtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202, 116137 (2019)

    Article  Google Scholar 

  14. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine 48(4), 577–582

    Google Scholar 

  15. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: Noddi: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the STI 2030-Major Projects (No. 2022ZD0209000) and the National Natural Science Foundation of China (No. 61971017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cheng .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, SM. et al. (2024). Mixed Integer Linear Programming for Discrete Sampling Scheme Design in Diffusion MRI. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics