Skip to main content

An Algebraic Proof of the Relation of Markov Fluid Queues and QBD Processes

  • Conference paper
  • First Online:
Analytical and Stochastic Modelling Techniques and Applications (ASMTA 2024)

Abstract

We study the relation of Markov fluid queues and QBD processes in this paper. Ahn and Ramaswami presented results about this relation and provided a stochastic interpretation based reasoning in [1]. In the current work, first we provide an algebraic proof for that relation.

After that, we present a negative result about the potential extension of the QBD based analysis Markov fluid queues to Markov fluid queues with two buffers. We present a 2-dimensional QBD process, which could be a candidate for describing the stationary behaviour of the related Markov fluid queue, but it turns out that the QBD based behaviour is different from the one of the Markov fluid queue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, S., Ramaswami, V.: Fluid flow models and queues - a connection by stochastic coupling. Stoch. Model. 19(3), 325–348 (2003)

    Article  MathSciNet  Google Scholar 

  2. Akar, N., Sohraby, K.: An invariant subspace approach in \(M/G/1\) and \(G/M/1\) type Markov chains. Stoch. Model. 13(3), 381–416 (1997)

    MathSciNet  Google Scholar 

  3. Akar, N., Sohraby, K.: Infinite-and finite-buffer Markov fluid queues: a unified analysis. J. Appl. Probability, 557–569 (2004)

    Google Scholar 

  4. Anick, D., Mitra, D., Sondhi, M.M.: Stochastic theory of a data-handling system. Bell Sys. Thech. J. 61(8), 1871–1894 (1982)

    Article  MathSciNet  Google Scholar 

  5. Asmussen, S.: Stationary distributions for fluid flow models with or without Brownian noise. Stoch. Model. 11(1), 21–49 (1995)

    MathSciNet  Google Scholar 

  6. Bean, N.G., Lewis, A., Nguyen, G.T., O’Reilly, M.M., Sunkara, V.: A discontinuous galerkin method for approximating the stationary distribution of stochastic fluid-fluid processes. Methodol. Comput. Appl. Probab. 24(4), 2823–2864 (2022)

    Article  MathSciNet  Google Scholar 

  7. Bean, N.G., O’Reilly, M.M.: The stochastic fluid-fluid model: a stochastic fluid model driven by an uncountable-state process, which is a stochastic fluid model itself. Stochastic Processes Appl. 124(5), 1741–1772 (2014)

    Article  MathSciNet  Google Scholar 

  8. Bean, N.G., O’Reilly, M.M., Palmowski, Z.: Matrix-analytic methods for the analysis of stochastic fluid-fluid models. Stoch. Model. 38(3), 416–461 (2022)

    Article  MathSciNet  Google Scholar 

  9. Bright, L., Taylor, P.G.: Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes. Stoch. Model. 11(3), 497–525 (1995)

    MathSciNet  Google Scholar 

  10. Buchholz, P., Mészáros, A., Telek, M.: Analysis of a two-state markov fluid model with 2 buffers. In: Iacono, M., Scarpa, M., Barbierato, E., Serrano, S., Cerotti, D., Longo, F. (eds.) Computer Performance Engineering and Stochastic Modelling - 19th European Workshop, EPEW 2023, and 27th International Conference, ASMTA 2023, Florence, Italy, June 20-23, 2023, Proceedings, vol. 14231, pp. 49–64. Springer, Cham (2023. https://doi.org/10.1007/978-3-031-43185-2_4

  11. Buchholz, P., Mészáros, A., Telek, M.: Stationary analysis of a constrained markov fluid model with two buffers. Stochastic Models (2024). (to appear)

    Google Scholar 

  12. da Silva Soares, A., Latouche, G.: Matrix-analytic methods for fluid queues with finite buffers. Performance Eval. 63(4-5), 295–314 (2006)

    Google Scholar 

  13. Hohn, N., Veitch, D., Papagiannaki, K., Diot, C.: Bridging router performance and queuing theory. SIGMETRICS Perform. Eval. Rev. 32(1), 355–366 (2004)

    Article  Google Scholar 

  14. Karandikar, R.L., Kulkarni, V.G.: Second-order fluid flow models: reflected Brownian motion in a random environment. Oper. Res. 43, 77–88 (1995)

    Article  Google Scholar 

  15. Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochastic modeling. SIAM (1999)

    Google Scholar 

  16. O’Reilly, M.M., Scheinhardt, W.: Stationary distributions for a class of Markov-modulated tandem fluid queues. Stoch. Model. 33(4), 524–550 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ramaswami, V.: Matrix analytic methods for stochastic fluid flows. In: International Teletraffic Congress, pp. 1019–1030, Edinburg (1999)

    Google Scholar 

  18. Stanford, D.A., Latouche, G., Woolford, D.G., Boychuk, D., Hunchak, A.: Erlangized fluid queues with application to uncontrolled fire perimeter. Stoch. Model. 21(2–3), 631–642 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklos Telek .

Editor information

Editors and Affiliations

A Proof of Theorem 2

A Proof of Theorem 2

Using \(\textbf{P}_{++}=\textbf{Q}_{++}/\lambda +\textbf{I}\), \(\textbf{P}_{+-}=\textbf{Q}_{+-}/\lambda \), \(\textbf{P}_{--}=\textbf{Q}_{--}/\lambda +\textbf{I}\), \(\textbf{P}_{-+}=\textbf{Q}_{-+}/\lambda \), for \(i \ge j \ge 1\), Equations (45)–(50) can be simplified to

$$\begin{aligned} - p_{00}^- \textbf{Q}_{--} &= \lambda r_2 ( p_{10}^- + p_{11}^-), \end{aligned}$$
(55)
$$\begin{aligned} p_{i0}^- (\lambda r_2\textbf{I}\!-\!\textbf{Q}_{--}) &= \lambda (1\!-\!r_2) p_{i1}^- + \lambda r_2 (p_{i+1,0}^-+p_{i+1,1}^-) , \end{aligned}$$
(56)
$$\begin{aligned} \lambda p_{ij}^+&= p_{i-1,j-1}^+ (\lambda \textbf{I}+ \textbf{Q}_{++}) + p_{i-1,j-1}^- \mathbf {Q_{-+}} , \end{aligned}$$
(57)
$$\begin{aligned} p_{ij}^- (\lambda \textbf{I}\!-\!\textbf{Q}_{--})&= p_{ij}^+ \mathbf {Q_{+-}} + \lambda r_2 p_{i+1,j+1}^- \nonumber \\ & ~~~~+ \mathcal {I}_{\{j<i\}} \lambda (1\!-\!r_2) p_{i,j+1}^-+ \mathcal {I}_{\{j=i\}} p_{i,j+1}^- \mathbf {Q_{+-}} , \end{aligned}$$
(58)
$$\begin{aligned} \lambda p_{1,2}^+&= p_{0,0}^- \mathbf {Q_{-+}}, \end{aligned}$$
(59)
$$\begin{aligned} \lambda p_{i+1,i+2}^+&= p_{i,i+1}^+ (\lambda \textbf{I}+\textbf{Q}_{++} ). \end{aligned}$$
(60)

Multiplying (60) by \(\frac{\lambda ^{i} x^{i-1} e^{-\lambda x}}{(i-1)!}\) and summing up from \(i=1\) to \(\infty \) gives

$$\begin{aligned} \sum _{i=1}^{\infty } \frac{\lambda ^{i} x^{i-1} e^{-\lambda x}}{(i-1)!} \lambda p_{i+1,i+2}^+&= \sum _{i=1}^{\infty } \frac{\lambda ^{i} x^{i-1} e^{-\lambda x}}{(i-1)!} p_{i,i+1}^+ (\lambda \textbf{I}+\textbf{Q}_{++} ), \end{aligned}$$
(61)
$$\begin{aligned} \frac{d}{dx}\tilde{V}(x) + \lambda \tilde{V}(x) &= \tilde{V}(x) (\lambda \textbf{I}+\textbf{Q}_{++} ), \end{aligned}$$
(62)

which results in (51).

By definition \(\tilde{W}(0,x)^\pm =\sum _{i=1}^{\infty } \frac{\lambda ^i x^{i-1} e^{-\lambda x}}{(i-1)!} \lambda p_{i,1}^\pm .\) Multiplying (56) by \(\frac{\lambda ^i x^{i-1} e^{-\lambda x}}{(i-1)!}\) and summing up from \(i=1\) to \(\infty \) gives

$$\begin{aligned} &\sum _{i=1}^{\infty } \frac{\lambda ^i x^{i-1} e^{-\lambda x}}{(i-1)!} p_{i0}^- (\lambda r_2\textbf{I}\!-\!\textbf{Q}_{--}) = \sum _{i=1}^{\infty } \frac{\lambda ^i x^{i-1} e^{-\lambda x}}{(i-1)!} \left( \lambda (1\!-\!r_2) p_{i1}^- + \lambda r_2 (p_{i+1,0}^-+p_{i+1,1}^-)\right) , \\ &\tilde{U}(x) (\lambda r_2\textbf{I}\!-\!\textbf{Q}_{--}) = \underbrace{ \sum _{i=1}^{\infty } \frac{\lambda ^i x^{i-1} e^{-\lambda x}}{(i-1)!} \lambda (1\!-\!r_2) p_{i1}^-}_{(1\!-\!r_2)\tilde{W}(0,x)^-} + \underbrace{\sum _{i=1}^{\infty } \frac{\lambda ^i x^{i-1} e^{-\lambda x}}{(i-1)!} \lambda r_2 p_{i+1,1}^-}_{r_2 \left( \frac{d}{dx}\tilde{W}(0,x)^- + \lambda \tilde{W}(0,x)^- \right) } \\ &~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + \underbrace{\sum _{i=1}^{\infty } \frac{\lambda ^i x^{i-1} e^{-\lambda x}}{(i-1)!} \lambda r_2 p_{i+1,0}^-}_{r_2 \left( \frac{d}{dx}\tilde{U}(x) + \lambda \tilde{U}(x)\right) }, \end{aligned}$$

which results in (51).

For the computation of \(\tilde{W}(x,y)\) we need the following lemma.

Lemma 1

The derivatives of \(\tilde{W}(x,y)^\pm =\sum _{i=1}^{\infty } \sum _{j=1}^{i} \frac{\lambda ^i y^{i-1} e^{-\lambda y}}{(i-1)!} \frac{\lambda ^j x^{j-1} e^{-\lambda x}}{(j-1)!} p_{i,j}^\pm \) satisfy

$$\begin{aligned} \frac{\partial }{\partial y} \tilde{W}(x,y)^\pm + \lambda \tilde{W}(x,y)^\pm = \sum _{i=2}^{\infty } \sum _{j=1}^{i} \frac{\lambda ^i y^{i-2} e^{-\lambda y}}{(i-2)!} \frac{\lambda ^j x^{j-1} e^{-\lambda x}}{(j-1)!} p_{i,j}^\pm ~, \end{aligned}$$
(63)
$$\begin{aligned} \frac{\partial }{\partial x} \tilde{W}(x,y)^\pm + \lambda \tilde{W}(x,y)^\pm & = \sum _{i=1}^{\infty } \sum _{j=2}^{i} \frac{\lambda ^i y^{i-1} e^{-\lambda y}}{(i-1)!} \frac{\lambda ^j x^{j-2} e^{-\lambda x}}{(j-2)!} p_{i,j}^\pm \end{aligned}$$
(64)
$$\begin{aligned} & = \sum _{i=2}^{\infty } \sum _{j=2}^{i-1} \frac{\lambda ^{i-1} y^{i-2} e^{-\lambda y}}{(i-2)!} \frac{\lambda ^j x^{j-2} e^{-\lambda x}}{(j-2)!} p_{i-1,j}^\pm ~, \end{aligned}$$
(65)

and

$$\begin{aligned} &\frac{\partial }{\partial x} \frac{\partial }{\partial y} \tilde{W}(x,y)^\pm +\lambda \frac{\partial }{\partial y} \tilde{W}(x,y)^\pm + \lambda \frac{\partial }{\partial x} \tilde{W}(x,y)^\pm + \lambda ^2 \tilde{W}(x,y)^\pm \\ \nonumber &= \sum _{i=2}^{\infty } \sum _{j=2}^{i} \frac{\lambda ^i y^{i-2} e^{-\lambda y}}{(i-2)!} \frac{\lambda ^j x^{j-2} e^{-\lambda x}}{(j-2)!}p_{i,j}^\pm . \end{aligned}$$
(66)

Proof

The statements of the lemma can be obtained by substituting the definition of \(\tilde{W}(x,y)^\pm \). We omit the details of the proof here.

Multiplying (57) by \(\frac{\lambda ^{i-1} y^{i-2} e^{-\lambda y}}{(i-2)!}\frac{\lambda ^{j-1} x^{j-2} e^{-\lambda x}}{(j-2)!}\) and summing up from \(i=2\) to \(\infty \) and \(j=2\) to i and utilizing (66) gives

$$\begin{aligned} &\underbrace{\sum _{i=2}^{\infty } \sum _{j=2}^{i} \frac{\lambda ^{i-1} y^{i-2} e^{-\lambda y}}{(i-2)!}\frac{\lambda ^{j-1} x^{j-2} e^{-\lambda x}}{(j-2)!} \lambda p_{ij}^+}_{\frac{1}{\lambda } \frac{\partial }{\partial x} \frac{\partial }{\partial y} \tilde{W}(x,y)^+ + \frac{\partial }{\partial y} \tilde{W}(x,y)^+ + \frac{\partial }{\partial x} \tilde{W}(x,y)^+ + \lambda \tilde{W}(x,y)^+} \\ &~~~~~~~~~~~= \underbrace{\sum _{i=2}^{\infty } \sum _{j=2}^{i} \frac{\lambda ^{i-1} y^{i-2} e^{-\lambda y}}{(i-2)!}\frac{\lambda ^{j-1} x^{j-2} e^{-\lambda x}}{(j-2)!} \left( p_{i-1,j-1}^+ (\lambda \textbf{I}+ \textbf{Q}_{++}) + p_{i-1,j-1}^- \mathbf {Q_{-+}}\right) }_{\tilde{W}(x,y)^+ (\lambda \textbf{I}+ \textbf{Q}_{++}) + \tilde{W}(x,y)^- \mathbf {Q_{-+}}} \end{aligned}$$

which results in (53).

For \(2\le j \le i\) we rewrite (58) as

$$\begin{aligned} &p_{i-1,j-1}^- (\lambda \textbf{I}\!-\!\textbf{Q}_{--})- p_{i-1,j-1}^+ \mathbf {Q_{+-}} \\ \nonumber &~~~~= \lambda r_2 p_{i,j}^- + \mathcal {I}_{\{j<i\}} \lambda (1\!-\!r_2) p_{i-1,j}^-+ \mathcal {I}_{\{j=i\}} p_{i-1,j}^- \mathbf {Q_{+-}} , \end{aligned}$$
(67)

Multiplying (67) by \(\frac{\lambda ^{i-1} y^{i-2} e^{-\lambda y}}{(i-2)!}\frac{\lambda ^{j-1} x^{j-2} e^{-\lambda x}}{(j-2)!}\) and summing up from \(i=2\) to \(\infty \) and \(j=2\) to i and utilizing Lemma 1 gives

$$\begin{aligned} &\underbrace{\sum _{i=2}^{\infty } \sum _{j=2}^{i} \frac{\lambda ^{i-1} y^{i-2} e^{-\lambda y}}{(i-2)!}\frac{\lambda ^{j-1} x^{j-2} e^{-\lambda x}}{(j-2)!} p_{i-1,j-1}^-}_{\tilde{W}(x,y)^-} (\lambda \textbf{I}\!-\!\textbf{Q}_{--}) \\ &~~~- \underbrace{\sum _{i=2}^{\infty } \sum _{j=2}^{i} \frac{\lambda ^{i-1} y^{i-2} e^{-\lambda y}}{(i-2)!}\frac{\lambda ^{j-1} x^{j-2} e^{-\lambda x}}{(j-2)!} p_{i-1,j-1}^+}_{\tilde{W}(x,y)^+} \textbf{Q}_{+-} \\ &~= \underbrace{\sum _{i=2}^{\infty } \sum _{j=2}^{i} \frac{\lambda ^{i-1} y^{i-2} e^{-\lambda y}}{(i-2)!}\frac{\lambda ^{j-1} x^{j-2} e^{-\lambda x}}{(j-2)!} \lambda r_2 p_{i,j}^-}_{r_2\left( \frac{1}{\lambda } \frac{\partial }{\partial x} \frac{\partial }{\partial y} \tilde{W}(x,y)^- + \frac{\partial }{\partial y} \tilde{W}(x,y)^- + \frac{\partial }{\partial x} \tilde{W}(x,y)^- + \lambda \tilde{W}(x,y)^- \right) } \\ &~~~+ \underbrace{\sum _{i=2}^{\infty } \sum _{j=2}^{i-1} \frac{\lambda ^{i-1} y^{i-2} e^{-\lambda y}}{(i-2)!}\frac{\lambda ^{j-1} x^{j-2} e^{-\lambda x}}{(j-2)!} \lambda (1\!-\!r_2) p_{i-1,j}^- }_{(1\!-\!r_2)\left( \frac{\partial }{\partial x} \tilde{W}(x,y)^- + \lambda \tilde{W}(x,y)^-\right) } \\ &~~~+ \underbrace{\sum _{i=2}^{\infty } \frac{\lambda ^{i-1} y^{i-2} e^{-\lambda y}}{(i-2)!}\frac{\lambda ^{i-1} x^{i-2} e^{-\lambda x}}{(i-2)!} p_{i-1,i}^- }_{\varepsilon (x,y)}\mathbf {Q_{+-}}, \end{aligned}$$

that is

$$\begin{aligned} &\tilde{W}(x,y)^- (\lambda \textbf{I}\!-\!\textbf{Q}_{--}) - \tilde{W}(x,y)^+ \textbf{Q}_{+-} \\ & ~~~~~= r_2\left( \frac{1}{\lambda } \frac{\partial }{\partial x} \frac{\partial }{\partial y} \tilde{W}(x,y)^- + \frac{\partial }{\partial y} \tilde{W}(x,y)^- + \frac{\partial }{\partial x} \tilde{W}(x,y)^- + \lambda \tilde{W}(x,y)^- \right) \\ &~~~~+ (1\!-\!r_2)\left( \frac{\partial }{\partial x} \tilde{W}(x,y)^- + \lambda \tilde{W}(x,y)^-\right) + \varepsilon (x,y)\mathbf {Q_{+-}}, \end{aligned}$$

which results in (54).

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buchholz, P., Meszaros, A., Telek, M. (2025). An Algebraic Proof of the Relation of Markov Fluid Queues and QBD Processes. In: Devos, A., Horváth, A., Rossi, S. (eds) Analytical and Stochastic Modelling Techniques and Applications. ASMTA 2024. Lecture Notes in Computer Science, vol 14826. Springer, Cham. https://doi.org/10.1007/978-3-031-70753-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70753-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70752-0

  • Online ISBN: 978-3-031-70753-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics