Skip to main content

Bayesian Forward-Inverse Transfer for Multiobjective Optimization

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Abstract

We present an evolutionary optimizer incorporating knowledge transfer through forward and inverse surrogate models for solving multiobjective problems, within a stringent computational budget. Forward knowledge transfer is employed to fully exploit solution-evaluation datasets from related tasks by building Bayesian forward multitask surrogate models that map points from decision to objective space. Inverse knowledge transfer via Bayesian inverse multitask models makes possible the creation of high-quality solution populations in decision space by mapping back from preferred points in objective space. In contrast to prior work, the proposed method can improve the overall convergence performance to multiple Pareto sets by fully exploiting information available for diverse multiobjective problems. Empirical studies conducted on benchmark and real-world multitask multiobjective optimization problems demonstrate the faster convergence rate and enhanced inverse modeling accuracy of our algorithm compared to state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The training process of the MTGP model can be found in [19].

  2. 2.

    For benchmark problems, the ground truth solutions serve as the reference solution set. For real-world problems, bi-objective and tri-objective reference solution sets are obtained using NSGA-II [13] and NSGA-III [12] with population size 500 and generation size 1000, similar to [40].

References

  1. Bali, K.K., Gupta, A., Ong, Y.S., Tan, P.S.: Cognizant multitasking in multiobjective multifactorial evolution: MO-MFEA-II. IEEE Trans. Cybern. 51(4), 1784–1796 (2021)

    Article  Google Scholar 

  2. Bali, K.K., Ong, Y.S., Gupta, A., Tan, P.S.: Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-II. IEEE Trans. Evol. Comput. 24(1), 69–83 (2019)

    Article  Google Scholar 

  3. Bonilla, E.V., Chai, K., Williams, C.: Multi-task gaussian process prediction. Adv. Neural Inf. Process. Syst. 20 (2007)

    Google Scholar 

  4. Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.): Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  5. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. KDD ’16, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939785

  6. Cheng, F.Y., Li, X.S.: Generalized center method for multiobjective engineering optimization. Eng. Optim. 31(5), 641–661 (1999).https://doi.org/10.1080/03052159908941390

  7. Cheng, R., Jin, Y., Narukawa, K., Sendhoff, B.: A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling. IEEE Trans. Evol. Comput. 19(6), 838–856 (2015). https://doi.org/10.1109/TEVC.2015.2395073

    Article  Google Scholar 

  8. Choong, H.X., Ong, Y.S., Gupta, A., Chen, C., Lim, R.: Jack and masters of all trades: one-pass learning sets of model sets from large pre-trained models. IEEE Comput. Intell. Mag. 18(3), 29–40 (2023). https://doi.org/10.1109/MCI.2023.3277769

    Article  Google Scholar 

  9. Coello, C.A.C.: Evolutionary Algorithms for Solving Multi-objective Problems. Springer, Cham (2007). https://doi.org/10.1007/978-0-387-36797-2

    Book  Google Scholar 

  10. Da, B., Gupta, A., Ong, Y.S.: Curbing negative influences online for seamless transfer evolutionary optimization. IEEE Trans. Cybern. 49(12), 4365–4378 (2018)

    Article  Google Scholar 

  11. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02, Cat. No.02TH8600, vol. 1, pp. 825–830 (2002). https://doi.org/10.1109/CEC.2002.1007032

  12. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  14. Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 124, 113–136 (2005)

    Article  MathSciNet  Google Scholar 

  15. Emmerich, M., Giannakoglou, K., Naujoks, B.: Single and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans. Evol. Comput. 10(4), 421–439 (2006). https://doi.org/10.1109/TEVC.2005.859463

    Article  Google Scholar 

  16. Feng, L., Gupta, A., Tan, K.C., Ong, Y.S.: Evolutionary Multi-Task Optimization: Foundations and Methodologies. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-5650-8

    Book  Google Scholar 

  17. Feng, L., Zhou, L., Zhong, J., Gupta, A., Ong, Y.S., Tan, K.C.: Evolutionary multitasking via explicit autoencoding. IEEE Trans. Cybern. 49(9), 3457–3470 (2018)

    Article  Google Scholar 

  18. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning: Methods, Systems, Challenges, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_1

    Chapter  Google Scholar 

  19. Gardner, J., Pleiss, G., Weinberger, K.Q., Bindel, D., Wilson, A.G.: GPyTorch: blackbox matrix-matrix Gaussian process inference with GPU acceleration. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  20. Giagkiozis, I., Fleming, P.J.: Pareto front estimation for decision making. Evol. Comput. 22(4), 651–678 (2014)

    Article  Google Scholar 

  21. Gupta, A., Ong, Y.S., Feng, L.: Multifactorial evolution: toward evolutionary multitasking. IEEE Trans. Evol. Comput. 20(3), 343–357 (2016)

    Article  Google Scholar 

  22. Gupta, A., Ong, Y.S., Feng, L.: Insights on transfer optimization: because experience is the best teacher. IEEE Trans. Emerg. Topics Comput. Intell. 2(1), 51–64 (2017)

    Article  Google Scholar 

  23. Gupta, A., Ong, Y.S., Feng, L., Tan, K.C.: Multiobjective multifactorial optimization in evolutionary multitasking. IEEE Trans. Cybern. 47(7), 1652–1665 (2016)

    Article  Google Scholar 

  24. Gupta, A., Ong, Y.S., Shakeri, M., Chi, X., NengSheng, A.Z.: The blessing of dimensionality in many-objective search: an inverse machine learning insight. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 3896–3902 (2019). https://doi.org/10.1109/BigData47090.2019.9005525

  25. Gupta, A., Zhou, L., Ong, Y.S., Chen, Z., Hou, Y.: Half a dozen real-world applications of evolutionary multitasking, and more. IEEE Comput. Intell. Mag. 17(2), 49–66 (2022). https://doi.org/10.1109/MCI.2022.3155332

    Article  Google Scholar 

  26. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) Evolutionary Multi-Criterion Optimization, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Chapter  Google Scholar 

  27. Kim, Y., Pan, Z., Hauser, K.: MO-BBO: multi-objective bilevel Bayesian optimization for robot and behavior co-design. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9877–9883 (2021).https://doi.org/10.1109/ICRA48506.2021.9561846

  28. Knowles, J.: Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006). https://doi.org/10.1109/TEVC.2005.851274

    Article  Google Scholar 

  29. Lai, G., Liao, M., Li, K.: Empirical studies on the role of the decision maker in interactive evolutionary multi-objective optimization. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 185–192 (2021).https://doi.org/10.1109/CEC45853.2021.9504980

  30. Lin, X., Yang, Z., Zhang, X., Zhang, Q.: Pareto set learning for expensive multi-objective optimization. In: Advances in Neural Information Processing Systems. vol. 35, pp. 19231–19247. Curran Associates, Inc. (2022)

    Google Scholar 

  31. Lin, X., Zhen, H.L., Li, Z., Zhang, Q.F., Kwong, S.: Pareto multi-task learning. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  32. Liu, J., Gupta, A., Ong, Y.S.: Inverse transfer multiobjective optimization. arXiv preprint arXiv:2312.14713 (2023)

  33. Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., Chi, E.H.: Modeling task relationships in multi-task learning with multi-gate mixture-of-experts. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1930–1939. KDD ’18, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3219819.3220007

  34. Ma, P., Du, T., Matusik, W.: Efficient continuous pareto exploration in multi-task learning. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 119, pp. 6522–6531. PMLR (2020)

    Google Scholar 

  35. Paria, B., Kandasamy, K., Póczos, B.: A flexible framework for multi-objective Bayesian optimization using random scalarizations. In: Adams, R.P., Gogate, V. (eds.) Proceedings of The 35th Uncertainty in Artificial Intelligence Conference. Proceedings of Machine Learning Research, vol. 115, pp. 766–776. PMLR (2020). https://proceedings.mlr.press/v115/paria20a.html

  36. Pfisterer, F., Schneider, L., Moosbauer, J., Binder, M., Bischl, B.: YAHPO gym - an efficient multi-objective multi-fidelity benchmark for hyperparameter optimization. In: Proceedings of the First International Conference on Automated Machine Learning. Proceedings of Machine Learning Research, vol. 188, pp. 31–39. PMLR (2022)

    Google Scholar 

  37. Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted s-metric selection. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol. 5199. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_78

  38. Seeger, M.: Gaussian processes for machine learning. Int. J. Neural Syst. 14(02), 69–106 (2004)

    Article  Google Scholar 

  39. Sinha, A., Korhonen, P., Wallenius, J., Deb, K.: An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls. Eur. J. Oper. Res. 233(3), 674–688 (2014). https://doi.org/10.1016/j.ejor.2013.08.046

    Article  MathSciNet  Google Scholar 

  40. Tan, C.S., Gupta, A., Ong, Y.S., Pratama, M., Tan, P.S., Lam, S.K.: Pareto optimization with small data by learning across common objective spaces. Sci. Rep. 13(1), 7842 (2023). https://doi.org/10.1038/s41598-023-33414-6

    Article  Google Scholar 

  41. Tanabe, R., Ishibuchi, H.: An easy-to-use real-world multi-objective optimization problem suite. Appl. Soft Comput. 89, 106078 (2020). https://doi.org/10.1016/j.asoc.2020.106078

    Article  Google Scholar 

  42. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm research: a history and analysis. Technical report, Citeseer (1998)

    Google Scholar 

  43. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: Openml: Networked science in machine learning. SIGKDD Explor. Newsl. 15(2), 49–60 (2014). https://doi.org/10.1145/2641190.2641198

  44. Wei, T., Liu, J., Gupta, A., Tan, P.S., Ong, Y.S.: Bayesian forward-inverse transfer for multiobjective optimization - supplementary materials (2024). https://doi.org/10.5281/zenodo.11665260

  45. Wei, T., Wang, S., Zhong, J., Liu, D., Zhang, J.: A review on evolutionary multitask optimization: trends and challenges. IEEE Trans. Evol. Comput. 26(5), 941–960 (2022). https://doi.org/10.1109/TEVC.2021.3139437

    Article  Google Scholar 

  46. Wei, T., Zhong, J.: Towards generalized resource allocation on evolutionary multitasking for multi-objective optimization. IEEE Comput. Intell. Mag. 16(4), 20–37 (2021). https://doi.org/10.1109/MCI.2021.3108310

    Article  Google Scholar 

  47. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  48. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2010). https://doi.org/10.1109/TEVC.2009.2033671

    Article  Google Scholar 

  49. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms — a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) PPSN V, pp. 292–301. Springer, Berlin, Heidelberg (1998). https://doi.org/10.1007/BFb0056872

    Chapter  Google Scholar 

Download references

Acknowledgement

This research is partly supported by the National Research Foundation, Singapore and DSO National Laboratories under the AI Singapore Programme (AISG Award No.: AISG2-GC-2023-010, “Design Beyond What You Know”: Material-Informed Differential Generative AI (MIDGAI) for Light-Weight High-Entropy Alloys and Multi-functional Composites (Stage 1a)”, the Distributed Smart Value Chain programme which is funded under the Singapore RIE2025 Manufacturing, Trade and Connectivity (MTC) Industry Alignment Fund-Pre-Positioning, (Award No: M23L4a0001), and the Centre for Frontier AI Research (CFAR) under Agency for Science, Technology and Research (A*STAR), and the College of Computing and Data Science, Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Liu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, T., Liu, J., Gupta, A., Tan, P.S., Ong, YS. (2024). Bayesian Forward-Inverse Transfer for Multiobjective Optimization. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15151. Springer, Cham. https://doi.org/10.1007/978-3-031-70085-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70085-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70084-2

  • Online ISBN: 978-3-031-70085-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics