Abstract
The evolution of mental disorders during this last decade and the future evolution with a lack of medical and social structure will put our society in a harmful situation. In the absence of curative treatment, it seems very hard to define a pathway to help the patient and his family for the management of autonomy of the patient. We will discuss the question of the Data shared by the patient himself or his entourage and we will develop the notion of quality of care through indicators as PREMS, PROMS (Patient-reported outcomes measures), HrQol (Health related Quality of Life), and the role of Business Intelligence (BI) tools in a perspective of P5 Medicine. This new approach would be analyzed in term of Technology Acceptance Model (TAM) by actors considering to implement this tools from the point of view of Perceived Usefulness (PU), Perceived Ease of Use (PEOU).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
https://www.insee.fr/fr/statistiques/2416631#tableau-figure1
Guyot, B.: Eléments pour une approche informationnelle dans les organisations. Sciences de la société (63) (2004)
André, A. (ed.): Digital Medicine. Springer, Cham (2018)
Dwivedi, A., Dwivedi, S.S., Tariq, M.R., Qiu, X., Hong, S., Xin, Y.: Scope of artificial intelligence in medicine. J. Res. Med. Dent. Sci. 8(3), 137–140 (2020)
Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 69, S36–S40 (2017)
https://www.fondation-mederic-alzheimer.org/faits-et-chiffres-12-22
Kenigsberg, P.A., et al.: Impact socio-économique de la maladie d’Alzheimer et des maladies apparentées en Europe. Gérontologie et société 32128129(1), 297–318 (2009)
https://www.has-sante.fr/upload/docs/application/pdf/2018-11/projet_strategique_2019-2024.pdf
Meliá, S., Nasabeh, S., Luján-Mora, S., Cachero, C.: MoSIoT: modeling and simulating IoT healthcare-monitoring systems for people with disabilities. Int. J. Environ. Res. Public Health 18(12), 6357 (2021)
Fraoua, K.E., Bourret, C., Mouly, S.: Data for health, case of mental disorders and the use of machine learning for early detection. ISKO (2022)
Saleh, I.: Internet of Things (IoT): concepts, issues, challenges and perspectives (2018)
Chattu, V.K.: A review of artificial intelligence, big data, and blockchain technology applications in medicine and global health. Big Data Cognit. Comput. 5(3), 41 (2021)
Simon, H.A.: The Sciences of the Artificial, Cambridge, MA (1969)
Forest, J., Micaëlli, J.P.: Artefact, les apports de l’approche simonienne. Revue du GRESEC (2007)
Matthewman, S.: Michel Foucault, technology, and actor-network theory. Techné Res. Philos. Technol. 17(2), 274–292 (2013)
Carmagnat, F.: Une approche sociotechnique de l’histoire du telephone public. Réseaux 5, 243–265 (2002)
Jézégou, A.: La présence à distance en e-Formation. Médiations et médiatisations-Revue internationale sur le numérique en éducation et communication 3, 59–67 (2020)
Marangunić, N., Granić, A.: Technology acceptance model: a literature review from 1986 to 2013. Univ. Access Inf. Soc. 14, 81–95 (2015)
Berx, N., Decré, W., Pintelon, L.: Examining the role of safety in the low adoption rate of collaborative robots. Procedia CIRP 106, 51–57 (2022)
de Sant’Anna, M., Morat, B., Rigaud, A.S.: Adaptabilité du robot Paro dans la prise en charge de la maladie d’Alzheimer sévère de patients institutionnalisés. NPG Neurologie-Psychiatrie-Gériatrie 12(67), 43–48 (2012)
Guiot, D., Sengès, E., Kerekes, M., Sancarlo, D.: Les solutions robotiques peuvent-elles favoriser le BienVieillir de la personne âgée en perte d’autonomie? In: 18th International Marketing Trends Conference (IMTC 2019), January 2019
Glende, S., Conrad, I., Krezdorn, L., Klemcke, S., Krätzel, C.: Increasing the acceptance of assistive robots for older people through marketing strategies based on stakeholder needs. Int. J. Soc. Robot. 8(3), 355–369 (2016)
Vishnu, S., Ramson, S.J., Jegan, R.: Internet of medical things (IoMT)-an overview. In: 2020 5th International Conference on Devices, Circuits and Systems (ICDCS), pp. 101–104. IEEE, March 2020
Portz, J.D., et al.: Using the technology acceptance model to explore user experience, intent to use, and use behavior of a patient portal among older adults with multiple chronic conditions: descriptive qualitative study. J. Med. Internet Res. 21(4), e11604 (2019)
Li, Y., Qi, J., Shu, H.: Review of relationships among variables in TAM. Tsinghua Sci. Technol. 13(3), 273–278 (2008)
Alomary, A., Woollard, J.: How is technology accepted by users? A review of technology acceptance models and theories (2015)
Fishbein, M.: A theory of reasoned action: some applications and implications (1979)
Wingo, N.P., Ivankova, N.V., Moss, J.A.: Faculty perceptions about teaching online: exploring the literature using the technology acceptance model as an organizing framework. Online Learn. 21(1), 15–35 (2017)
Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 39(2), 273–315 (2008)
Sagner, M., et al.: The P4 health spectrum–a predictive, preventive, personalized and participatory continuum for promoting healthspan. Prog. Cardiovasc. Dis. 59(5), 506–521 (2017)
Pravettoni, G., Triberti, S.: A “P5” approach to healthcare and health technology. P5 eHealth: an agenda for the health technologies of the future, pp. 3–17 (2020)
Bellinger, G., Castro, D., Mills, A.: Data, information, knowledge, and wisdom (2004)
Hampel, H., et al.: Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat. Rev. Drug Discov. 9(7), 560–574 (2010)
Roussel, C., et al.: Place of patient-reported outcomes & experiences measurements (PROMS/PREMS) in the assessment and pricing of health technologies in France. Therapies 77(1), 103–115 (2022)
Graf, C.: The Lawton instrumental activities of daily living scale. AJN Am. J. Nurs. 108(4), 52–62 (2008)
Croisile, B., Astier, J.L., Beaumont, C.: Standardization of the 5-word test in a group of 191 normal subjects aged 50 to 90 years. Revue Neurologique 163(3), 323–333 (2007)
Solomon, P.R., Pendlebury, W.W.: Recognition of Alzheimer’s disease: the 7 minute screen. Fam. Med. 30(4), 265–271 (1998)
Solomon, P.R., et al.: A 7 minute neurocognitive screening battery highly sensitive to Alzheimer’s disease. Arch. Neurol. 55(3), 349–355 (1998)
Osborn, G.G., Saunders, A.V.: Current treatments for patients with Alzheimer disease. J. Am. Osteopath. Assoc. 110(s98), 16–26 (2010)
Kaufer, D.I., et al.: Validation of the NPI-Q, a brief clinical form of the neuropsychiatric inventory. J. Neuropsychiatry Clin. Neurosci. 12(2), 233–239 (2000)
Senanarong, V., et al.: Agitation in Alzheimer’s disease is a manifestation of frontal lobe dysfunction. Dementia Geriatr. Cognit. Disord. 17(1–2), 14–20 (2004)
Baker, S.B., Xiang, W., Atkinson, I.: Internet of things for smart healthcare: technologies, challenges, and opportunities. IEEE Access 5, 26521–26544 (2017)
Sharma, M., Singh, G., Singh, R.: Accurate prediction of life style based disorders by smart healthcare using machine learning and prescriptive big data analytics. Data Intensive Comput. Appl. Big Data 29, 428 (2018)
Chong, Z.H.K., et al.: Predicting potential Alzheimer medical condition in elderly using IOT sensors-case study (2017)
Cummings, J.L., Isaacson, R.S., Schmitt, F.A., Velting, D.M.: A practical algorithm for managing Alzheimer’s disease: what, when, and why? Ann. Clin. Transl. Neurol. 2(3), 307–323 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fraoua, K.E., Mouly, S. (2023). P5 Medicine and BI for Monitoring Moderate Neurocognitive Disorders. In: Gao, Q., Zhou, J., Duffy, V.G., Antona, M., Stephanidis, C. (eds) HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14055. Springer, Cham. https://doi.org/10.1007/978-3-031-48041-6_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-48041-6_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48040-9
Online ISBN: 978-3-031-48041-6
eBook Packages: Computer ScienceComputer Science (R0)