Skip to main content

P5 Medicine and BI for Monitoring Moderate Neurocognitive Disorders

  • Conference paper
  • First Online:
HCI International 2023 – Late Breaking Papers (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14055))

Included in the following conference series:

  • 1064 Accesses

Abstract

The evolution of mental disorders during this last decade and the future evolution with a lack of medical and social structure will put our society in a harmful situation. In the absence of curative treatment, it seems very hard to define a pathway to help the patient and his family for the management of autonomy of the patient. We will discuss the question of the Data shared by the patient himself or his entourage and we will develop the notion of quality of care through indicators as PREMS, PROMS (Patient-reported outcomes measures), HrQol (Health related Quality of Life), and the role of Business Intelligence (BI) tools in a perspective of P5 Medicine. This new approach would be analyzed in term of Technology Acceptance Model (TAM) by actors considering to implement this tools from the point of view of Perceived Usefulness (PU), Perceived Ease of Use (PEOU).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://www.insee.fr/fr/statistiques/2416631#tableau-figure1

  2. Guyot, B.: Eléments pour une approche informationnelle dans les organisations. Sciences de la société (63) (2004)

    Google Scholar 

  3. https://www.health-data-hub.fr/

  4. https://gdpr-info.eu/

  5. André, A. (ed.): Digital Medicine. Springer, Cham (2018)

    Google Scholar 

  6. https://drees.solidarites-sante.gouv.fr/publications-documents-de-reference-communique-de-presse/panoramas-de-la-drees/CNS2022

  7. Dwivedi, A., Dwivedi, S.S., Tariq, M.R., Qiu, X., Hong, S., Xin, Y.: Scope of artificial intelligence in medicine. J. Res. Med. Dent. Sci. 8(3), 137–140 (2020)

    Google Scholar 

  8. Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 69, S36–S40 (2017)

    Article  Google Scholar 

  9. https://www.fondation-mederic-alzheimer.org/faits-et-chiffres-12-22

  10. Kenigsberg, P.A., et al.: Impact socio-économique de la maladie d’Alzheimer et des maladies apparentées en Europe. Gérontologie et société 32128129(1), 297–318 (2009)

    Google Scholar 

  11. https://www.has-sante.fr/upload/docs/application/pdf/2018-11/projet_strategique_2019-2024.pdf

  12. Meliá, S., Nasabeh, S., Luján-Mora, S., Cachero, C.: MoSIoT: modeling and simulating IoT healthcare-monitoring systems for people with disabilities. Int. J. Environ. Res. Public Health 18(12), 6357 (2021)

    Article  Google Scholar 

  13. Fraoua, K.E., Bourret, C., Mouly, S.: Data for health, case of mental disorders and the use of machine learning for early detection. ISKO (2022)

    Google Scholar 

  14. Saleh, I.: Internet of Things (IoT): concepts, issues, challenges and perspectives (2018)

    Google Scholar 

  15. Chattu, V.K.: A review of artificial intelligence, big data, and blockchain technology applications in medicine and global health. Big Data Cognit. Comput. 5(3), 41 (2021)

    Article  Google Scholar 

  16. Simon, H.A.: The Sciences of the Artificial, Cambridge, MA (1969)

    Google Scholar 

  17. Forest, J., Micaëlli, J.P.: Artefact, les apports de l’approche simonienne. Revue du GRESEC (2007)

    Google Scholar 

  18. Matthewman, S.: Michel Foucault, technology, and actor-network theory. Techné Res. Philos. Technol. 17(2), 274–292 (2013)

    Google Scholar 

  19. Carmagnat, F.: Une approche sociotechnique de l’histoire du telephone public. Réseaux 5, 243–265 (2002)

    Article  Google Scholar 

  20. Jézégou, A.: La présence à distance en e-Formation. Médiations et médiatisations-Revue internationale sur le numérique en éducation et communication 3, 59–67 (2020)

    Google Scholar 

  21. Marangunić, N., Granić, A.: Technology acceptance model: a literature review from 1986 to 2013. Univ. Access Inf. Soc. 14, 81–95 (2015)

    Article  Google Scholar 

  22. Berx, N., Decré, W., Pintelon, L.: Examining the role of safety in the low adoption rate of collaborative robots. Procedia CIRP 106, 51–57 (2022)

    Article  Google Scholar 

  23. de Sant’Anna, M., Morat, B., Rigaud, A.S.: Adaptabilité du robot Paro dans la prise en charge de la maladie d’Alzheimer sévère de patients institutionnalisés. NPG Neurologie-Psychiatrie-Gériatrie 12(67), 43–48 (2012)

    Google Scholar 

  24. Guiot, D., Sengès, E., Kerekes, M., Sancarlo, D.: Les solutions robotiques peuvent-elles favoriser le BienVieillir de la personne âgée en perte d’autonomie? In: 18th International Marketing Trends Conference (IMTC 2019), January 2019

    Google Scholar 

  25. Glende, S., Conrad, I., Krezdorn, L., Klemcke, S., Krätzel, C.: Increasing the acceptance of assistive robots for older people through marketing strategies based on stakeholder needs. Int. J. Soc. Robot. 8(3), 355–369 (2016)

    Article  Google Scholar 

  26. Vishnu, S., Ramson, S.J., Jegan, R.: Internet of medical things (IoMT)-an overview. In: 2020 5th International Conference on Devices, Circuits and Systems (ICDCS), pp. 101–104. IEEE, March 2020

    Google Scholar 

  27. https://www.fondation-mederic-alzheimer.org/le-projet-precos-bellan-laureat-2022-de-lappel-projets-inm-et-maladie-dalzheimer

  28. Portz, J.D., et al.: Using the technology acceptance model to explore user experience, intent to use, and use behavior of a patient portal among older adults with multiple chronic conditions: descriptive qualitative study. J. Med. Internet Res. 21(4), e11604 (2019)

    Article  Google Scholar 

  29. Li, Y., Qi, J., Shu, H.: Review of relationships among variables in TAM. Tsinghua Sci. Technol. 13(3), 273–278 (2008)

    Article  Google Scholar 

  30. Alomary, A., Woollard, J.: How is technology accepted by users? A review of technology acceptance models and theories (2015)

    Google Scholar 

  31. Fishbein, M.: A theory of reasoned action: some applications and implications (1979)

    Google Scholar 

  32. Wingo, N.P., Ivankova, N.V., Moss, J.A.: Faculty perceptions about teaching online: exploring the literature using the technology acceptance model as an organizing framework. Online Learn. 21(1), 15–35 (2017)

    Article  Google Scholar 

  33. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 39(2), 273–315 (2008)

    Article  Google Scholar 

  34. https://www.internetsociety.org/news/press-releases/2019/concerns-over-privacy-and-security-contribute-to-consumer-distrust-in-connected-devices/

  35. Sagner, M., et al.: The P4 health spectrum–a predictive, preventive, personalized and participatory continuum for promoting healthspan. Prog. Cardiovasc. Dis. 59(5), 506–521 (2017)

    Google Scholar 

  36. Pravettoni, G., Triberti, S.: A “P5” approach to healthcare and health technology. P5 eHealth: an agenda for the health technologies of the future, pp. 3–17 (2020)

    Google Scholar 

  37. Bellinger, G., Castro, D., Mills, A.: Data, information, knowledge, and wisdom (2004)

    Google Scholar 

  38. Hampel, H., et al.: Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat. Rev. Drug Discov. 9(7), 560–574 (2010)

    Google Scholar 

  39. Roussel, C., et al.: Place of patient-reported outcomes & experiences measurements (PROMS/PREMS) in the assessment and pricing of health technologies in France. Therapies 77(1), 103–115 (2022)

    Google Scholar 

  40. Graf, C.: The Lawton instrumental activities of daily living scale. AJN Am. J. Nurs. 108(4), 52–62 (2008)

    Article  Google Scholar 

  41. Croisile, B., Astier, J.L., Beaumont, C.: Standardization of the 5-word test in a group of 191 normal subjects aged 50 to 90 years. Revue Neurologique 163(3), 323–333 (2007)

    Article  Google Scholar 

  42. Solomon, P.R., Pendlebury, W.W.: Recognition of Alzheimer’s disease: the 7 minute screen. Fam. Med. 30(4), 265–271 (1998)

    Google Scholar 

  43. Solomon, P.R., et al.: A 7 minute neurocognitive screening battery highly sensitive to Alzheimer’s disease. Arch. Neurol. 55(3), 349–355 (1998)

    Article  Google Scholar 

  44. Osborn, G.G., Saunders, A.V.: Current treatments for patients with Alzheimer disease. J. Am. Osteopath. Assoc. 110(s98), 16–26 (2010)

    Google Scholar 

  45. Kaufer, D.I., et al.: Validation of the NPI-Q, a brief clinical form of the neuropsychiatric inventory. J. Neuropsychiatry Clin. Neurosci. 12(2), 233–239 (2000)

    Google Scholar 

  46. Senanarong, V., et al.: Agitation in Alzheimer’s disease is a manifestation of frontal lobe dysfunction. Dementia Geriatr. Cognit. Disord. 17(1–2), 14–20 (2004)

    Article  Google Scholar 

  47. Baker, S.B., Xiang, W., Atkinson, I.: Internet of things for smart healthcare: technologies, challenges, and opportunities. IEEE Access 5, 26521–26544 (2017)

    Article  Google Scholar 

  48. Sharma, M., Singh, G., Singh, R.: Accurate prediction of life style based disorders by smart healthcare using machine learning and prescriptive big data analytics. Data Intensive Comput. Appl. Big Data 29, 428 (2018)

    Google Scholar 

  49. Chong, Z.H.K., et al.: Predicting potential Alzheimer medical condition in elderly using IOT sensors-case study (2017)

    Google Scholar 

  50. Cummings, J.L., Isaacson, R.S., Schmitt, F.A., Velting, D.M.: A practical algorithm for managing Alzheimer’s disease: what, when, and why? Ann. Clin. Transl. Neurol. 2(3), 307–323 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Elia Fraoua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fraoua, K.E., Mouly, S. (2023). P5 Medicine and BI for Monitoring Moderate Neurocognitive Disorders. In: Gao, Q., Zhou, J., Duffy, V.G., Antona, M., Stephanidis, C. (eds) HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14055. Springer, Cham. https://doi.org/10.1007/978-3-031-48041-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48041-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48040-9

  • Online ISBN: 978-3-031-48041-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics