Skip to main content

Revisiting TENT for Test-Time Adaption Semantic Segmentation and Classification Head Adjustment

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14357))

Included in the following conference series:

  • 770 Accesses

Abstract

Test-time adaption is very effective at solving the domain shift problem where the training data and testing data are sampled from different domains. However, most test-time adaption methods made their success on classification tasks while object detection and segmentation tasks usually have more applications in the real world. Meanwhile, methods that update the model at test-time which is a main branch in test-time adaption (e.g., TENT [1], a typical method of this branch) only update the backbone, and the classification head remains unchanged. Though the classification head trained by the training data behaves well on the source domain, it is not guaranteed to be effective for a new domain and a new backbone. In our work, we re-weight the entropy of pixels in an image and adopt SAR [2] to overcome the instability in online adaption. Experiment results show that the segmentation method in TENT becomes more efficient and stable thanks to these improvements. For the classification task, we propose to use T3A [3] to update the backbone and finetune the classification head in the meantime based on TENT, which boosts the classification accuracy by a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726 (2020)

  2. Niu, S., et al.: Towards stable test-time adaptation in dynamic wild world. arXiv preprint arXiv:2302.12400 (2023)

  3. Iwasawa, Y., Matsuo, Y.: Test-time classifier adjustment module for model-agnostic domain generalization. Adv. Neural. Inf. Process. Syst. 34, 2427–2440 (2021)

    Google Scholar 

  4. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261 (2019)

  5. Blanchard, G., Lee, G., Scott, C.: Generalizing from several related classification tasks to a new unlabeled sample. In: Advances in Neural Information Processing Systems, vol. 24 (2011)

    Google Scholar 

  6. Dubey, A., Ramanathan, V., Pentland, A., Mahajan, D.: Adaptive methods for real-world domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14340–14349 (2021)

    Google Scholar 

  7. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with self-supervision for generalization under distribution shifts. In: International Conference on Machine Learning, pp. 9229–9248. PMLR (2020)

    Google Scholar 

  8. Gandelsman, Y., Sun, Y., Chen, X., Efros, A.: Test-time training with masked autoencoders: Adv. Neural. Inf. Process. Syst. 35, 29374–29385 (2022)

    Google Scholar 

  9. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  10. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)

    Google Scholar 

  11. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016, Part III. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  12. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3722–3731 (2017)

    Google Scholar 

  13. Dundar, A., Liu, M.-Y., Wang, T.-C., Zedlewski, J., Kautz, J.: Domain stylization: a strong, simple baseline for synthetic to real image domain adaptation. arXiv preprint arXiv:1807.09384 (2018)

  14. Chen, Y.-C., Lin, Y.-Y., Yang, M.-H., Huang, J.-B.: CrDoCo: pixel-level domain transfer with cross-domain consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1791–1800 (2019)

    Google Scholar 

  15. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

  16. Li, H., Pan, S.J., Wang, Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)

    Google Scholar 

  17. Li, D., Yang, Y., Song, Y.-Z., Hospedales, T.: Learning to generalize: meta-learning for domain generalization. In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  18. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: towards domain generalization using meta-regularization. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  19. Li, Y., Yang, Y., Zhou, W., Hospedales, T.: Feature-critic networks for heterogeneous domain generalization. In: International Conference on Machine Learning, pp. 3915–3924. PMLR (2019)

    Google Scholar 

  20. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  21. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  22. Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. arXiv preprint arXiv:1603.04779 (2016)

  23. Zou, Y., Zhang, Z., Li, C.L., Zhang, H., Pfister, T., Huang, J.B.: Learning instance-specific adaptation for cross-domain segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXXIII. LNCS, vol. 13693, pp. 459–476. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_27

    Chapter  Google Scholar 

  24. Gao, J., Zhang, J., Liu, X., Darrell, T., Shelhamer, E., Wang, D.: Back to the source: diffusion-driven test-time adaptation. arXiv preprint arXiv:2207.03442 (2022)

  25. Xiao, Z., Zhen, X., Liao, S., Snoek, C.G.M.: Energy-based test sample adaptation for domain generalization. arXiv preprint arXiv:2302.11215 (2023)

  26. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. arXiv preprint arXiv:2110.04596 (2021)

  27. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020)

  28. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  29. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part II. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  30. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  31. Li, D., Yang, Y., Song, Y.-Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  32. Choi, S., Jung, S., Yun, H., Kim, J.T., Kim, S., Choo, J.: RobustNet: improving domain generalization in urban-scene segmentation via instance selective whitening. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11580–11590 (2021)

    Google Scholar 

  33. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 62272430) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X., Chu, Q., Miao, C., Liu, B., Yu, N. (2023). Revisiting TENT for Test-Time Adaption Semantic Segmentation and Classification Head Adjustment. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14357. Springer, Cham. https://doi.org/10.1007/978-3-031-46311-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46311-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46310-5

  • Online ISBN: 978-3-031-46311-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics