Skip to main content

Event Association Analysis Using Graph Rules

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

Event association analysis is used to mine potential association relationships between different events in event data sets, and is widely used in areas such as commodity trading and social media networks. Graph rules can be defined with different forms and expressive capabilities according to relationships in various domains. For the event association domain, we define an event association rule based on statistical knowledge to examine positive and negative associations between events, and the generated patterns fuse other semantic information such as time and location to realize the inference on event data. We innovatively propose a matching method for matching candidate sets, which can further refine the rule matching results to each specific event node so that the results can be logically interpreted. Meanwhile, based on the existing rule matching algorithms, we propose an incremental computation method that can quickly process the incremental part of the event data, effectively saving computational resources and time. We demonstrate the accuracy and efficiency of the algorithm using real-life datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allan, J.: Topic Detection and Tracking: Event-based Information Organization, vol. 12. Springer, Cham (2002). https://doi.org/10.1007/978-1-4615-0933-2

    Book  MATH  Google Scholar 

  2. Bhattacharjya, D., Gao, T., Mattei, N., et al.: Cause-effect association between event pairs in event datasets. In: Proceedings of the 29th International Conference on IJCAI, pp. 1202–1208 (2021)

    Google Scholar 

  3. Bhattacharjya, D., Shanmugam, K., Gao, T., et al.: Event-driven continuous time Bayesian networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3259–3266 (2020)

    Google Scholar 

  4. Cordella, L.P., Foggia, P., Sansone, C., et al.: A (sub) graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004)

    Article  Google Scholar 

  5. Dettmers, T., Minervini, P., Stenetorp, P., et al.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  6. Fan, G., Fan, W., Li, Y., et al.: Extending graph patterns with conditions. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 715–729 (2020)

    Google Scholar 

  7. Fan, W., Jin, R., Liu, M., et al.: Capturing associations in graphs. Proc. VLDB Endowment 13(12), 1863–1876 (2020)

    Article  Google Scholar 

  8. Fan, W., Li, J., Ma, S., et al.: Graph pattern matching: from intractable to polynomial time. Proc. VLDB Endowment 3(1–2), 264–275 (2010)

    Article  Google Scholar 

  9. Fan, W., Wang, X., Wu, Y.: Incremental graph pattern matching. ACM Trans. Database Syst. (TODS) 38(3), 1–47 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, W., Wang, X., Wu, Y., et al.: Association rules with graph patterns. Proc. VLDB Endowment 8(12), 1502–1513 (2015)

    Article  Google Scholar 

  11. Fan, W., Wu, Y., Xu, J.: Adding counting quantifiers to graph patterns. In: Proceedings of the 2016 International Conference on Management of Data, pp. 1215–1230 (2016)

    Google Scholar 

  12. Hu, Z., Dong, Y., Wang, K., et al.: Heterogeneous graph transformer. In: Proceedings of the Web Conference 2020, pp. 2704–2710 (2020)

    Google Scholar 

  13. Khan, S.M., Soutchanski, M.: Diagnosis as computing causal chains from event traces. In: Proceedings of the AAAI Fall Symposium: Integrating Planning, Diagnosis, and Causal Reasoning (SIP-18). AAAI Press (2018)

    Google Scholar 

  14. Leetaru, K., Schrodt, P.A.: Gdelt: global data on events, location, and tone, 1979–2012. In: ISA Annual Convention, vol. 2, pp. 1–49. Citeseer (2013)

    Google Scholar 

  15. Liu, X., Huang, H., Zhang, Y.: Open domain event extraction using neural latent variable models. arXiv preprint arXiv:1906.06947 (2019)

  16. Ma, S., Cao, Y., Fan, W., et al.: Strong simulation: capturing topology in graph pattern matching. ACM Trans. Database Syst. (TODS) 39(1), 1–46 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Milner, R.: Communication and Concurrency, vol. 84. Prentice hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  18. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT press, Cambridge (2000)

    MATH  Google Scholar 

  19. Yang, B., Yih, W.T., He, X., et al.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  20. Zhang, H., Liu, X., Pan, H., et al.: Aser: a large-scale eventuality knowledge graph. In: Proceedings of the Web Conference 2020, pp. 201–211 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueli Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, P., Wang, W., Liu, X., Sun, L., Dong, B. (2023). Event Association Analysis Using Graph Rules. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14257. Springer, Cham. https://doi.org/10.1007/978-3-031-44216-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44216-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44215-5

  • Online ISBN: 978-3-031-44216-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics