Skip to main content

Powered Dirichlet Process - Controlling the “Rich-Get-Richer” Assumption in Bayesian Clustering

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

The Dirichlet process is one of the most widely used priors in Bayesian clustering. This process allows for a nonparametric estimation of the number of clusters when partitioning datasets. The “rich-get-richer” property is a key feature of this process, and transcribes that the a priori probability for a cluster to get selected dependent linearly on its population.

In this paper, we show that such hypothesis is not necessarily optimal. We derive the Powered Dirichlet Process as a generalization of the Dirichlet-Multinomial distribution as an answer to this problem. We then derive some of its fundamental properties (expected number of clusters, convergence). Unlike state-of-the-art efforts in this direction, this new formulation allows for direct control of the importance of the “rich-get-richer” prior. We confront our proposition to several simulated and real-world datasets, and confirm that our formulation allows for significantly better results in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Codes and datasets available at https://github.com/GaelPouxMedard/PDPs.

  2. 2.

    http://www.manfredclauss.de/fr/index.html.

References

  1. Airoldi, E., Blei, D., Fienberg, S., Xing, E.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9, 1991–1992 (2008)

    MATH  Google Scholar 

  2. Arratia, R., Barbour, A.D., Tavaré, S.: Poisson process approximations for the Ewens sampling formula. Ann. Appl. Probab. 2(3), 519–535 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Betancourt, B., Zanella, G., Miller, J.W., Wallach, H., Zaidi, A., Steorts, R.C.: Flexible models for microclustering with application to entity resolution, vol. 29 (2016). https://proceedings.neurips.cc/paper/2016/file/670e8a43b246801ca1eaca97b3e19189-Paper.pdf

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  5. Blei, D., Frazier, P.: Distance dependent Chinese restaurant processes. J. Mach. Learn. Res. 12, 2461–2488 (2011)

    Google Scholar 

  6. Cobo-López, S., Godoy-Lorite A., Duch, J.: Optimal prediction of decisions and model selection in social dilemmas using block models. EPJ Data Sci. 7(48) (2018)

    Google Scholar 

  7. Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1(2), 209–230 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frigyik, A.B., Kapila, A., Gupta, M.R.: Introduction to the Dirichlet distribution and related processes (2010)

    Google Scholar 

  9. Ghosh, S., Raptis, M., Sigal, L., Sudderth, E.B.: Nonparametric clustering with distance dependent hierarchies. In: UAI 2014, pp. 260–269 (2014)

    Google Scholar 

  10. Godoy-Lorite, A., Guimerà, R., Moore, C., Sales-Pardo, M.: Accurate and scalable social recommendation using mixed-membership stochastic block models. PNAS 113(50), 14207–14212 (2016)

    Article  Google Scholar 

  11. Goldwater, S., Griffiths, T.L., Johnson, M.: Producing power-law distributions and damping word frequencies with two-stage language models. JMLR 12(68) (2011)

    Google Scholar 

  12. Guimera, R., Llorente, A., Sales-Pardo, M.: Predicting human preferences using the block structure of complex social networks. PLOS One 7(9) (2012)

    Google Scholar 

  13. Guimerá, R., Sales-Pardo, M.: A network inference method for large-scale unsupervised identification of novel drug-drug interactions. PLoS Comput. Biol. (2013)

    Google Scholar 

  14. Hanson, J.W., Ortman, S.G., Lobo, J.: Urbanism and the division of labour in the roman empire. J. R. Soc. Interface 14(136), 20170367 (2017)

    Article  Google Scholar 

  15. Ishwaran, H., James, L.: Generalized weighted Chinese restaurant processes for species sampling mixture models. Statistica Sinica 13, 1211–1235 (2003)

    Google Scholar 

  16. Jensen, S., Liu, J.: Bayesian clustering of transcription factor binding motifs. J. Am. Stat. Assoc. 103, 188–200 (2008)

    Google Scholar 

  17. Jordan, M.: Dirchlet processes, Chinese restaurant processes and all that. In: ICML (2005)

    Google Scholar 

  18. Lee, C.J., Sang, H.: Why the rich get richer? On the balancedness of random partition models. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 12521–12541. PMLR, 17–23 July 2022

    Google Scholar 

  19. Lijoi, A., Mena, R.H., Prünster, I.: Controlling the reinforcement in Bayesian non-parametric mixture models. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 69(4), 715–740 (2007). https://doi.org/10.1111/j.1467-9868.2007.00609.x. https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2007.00609.x

  20. McDowell, I.C., Manandhar, D., Vockley, C.M., Schmid, A.K., Reddy, T.E., Engelhardt, B.E.: Clustering gene expression time series data using an infinite Gaussian process mixture model. PLoS Comput. Biol. 14(1), e1005896 (2018)

    Article  Google Scholar 

  21. Pitman, J., Yor, M.: The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25(2), 855–900 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Poux-Médard, G., Velcin, J., Loudcher, S.: Interactions in information spread: quantification and interpretation using stochastic block models. arXiv (2020)

    Google Scholar 

  23. Qin, Z.S., McCue, L.A., Thompson, W., Mayerhofer, L., Lawrence, C.E., Liu, J.S.: Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites. Nat. Biotechnol. 21, 435–439 (2003)

    Google Scholar 

  24. Rasmussen, C.E.: The infinite gaussian mixture model. In: NIPS 1999, pp. 554–560. MIT Press (1999)

    Google Scholar 

  25. Socher, R., Maas, A., Manning, C.: Spectral Chinese restaurant processes: nonparametric clustering based on similarities. In: JMLR - Proceedings, vol. 15, pp. 698–706 (2011)

    Google Scholar 

  26. Steorts, R.C.: Entity resolution with empirically motivated priors 10, 849 (2015)

    MathSciNet  Google Scholar 

  27. Steorts, R.C., Hall, R., Fienberg, S.E.: SMERED: a Bayesian approach to graphical record linkage and de-duplication, vol. 33, pp. 922–930 (2014)

    Google Scholar 

  28. Sudderth, E., Jordan, M.: Shared segmentation of natural scenes using dependent Pitman-Yor processes. In: NIPS, vol. 21 (2009)

    Google Scholar 

  29. Teh, Y., Gorur, D.: Indian buffet processes with power-law behavior, vol. 22 (2009)

    Google Scholar 

  30. Wallach, H., Jensen, S., Dicker, L., Heller, K.: An alternative prior process for nonparametric Bayesian clustering. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 892–899. JMLR (2010)

    Google Scholar 

  31. Welling, M.: Flexible priors for infinite mixture models. In: Workshop on Learning with Non-parametric Bayesian Methods (2006)

    Google Scholar 

  32. Xu, W., Li, Y., Qiang, J.: Dynamic clustering for short text stream based on Dirichlet process. Appl. Intell. (2021). https://doi.org/10.1007/s10489-021-02263-z

    Article  Google Scholar 

  33. Yin, J., Wang, J.: A dirichlet multinomial mixture model-based approach for short text clustering. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 233–242. Association for Computing Machinery, New York, NY, USA (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaël Poux-Médard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poux-Médard, G., Velcin, J., Loudcher, S. (2023). Powered Dirichlet Process - Controlling the “Rich-Get-Richer” Assumption in Bayesian Clustering. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14169. Springer, Cham. https://doi.org/10.1007/978-3-031-43412-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43412-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43411-2

  • Online ISBN: 978-3-031-43412-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics