Abstract
Over the past decade, mobile devices have become an integral part of our daily lives. These devices rely on applications to deliver a diverse range of services and functionalities to users, such as social networks or online shopping apps. The usage of these applications has led to the emergence of novel security risks, facilitating the rapid proliferation of malicious apps. To deal with the increasing numbers of Android malware in the wild, deep learning models have emerged as promising detection systems. In this paper, we propose an Android malware detection system using Convolutional Neural Networks (CNN). To accomplish this objective, we trained three distinct models (VGG16, RESNET50, and InceptionV3) on the image representation of the Dalvik executable format. Our assessment, conducted on a dataset of more than 13000 samples, showed that all three models performed up to 99% of the detection of malicious Android applications. Finally, we discuss the potential benefits of employing this type of solution for detecting Android malware.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K.: Drebin: effective and explainable detection of android malware in your pocket. In: Proceedings 2014 Network and Distributed System Security Symposium. Internet Society (2014). https://doi.org/10.14722/ndss.2014.23247
Aung, Z., Zaw, W.T.: Permission-based android malware detection. Int. J. Sci. Technol. Res. 2, 228–234 (2013)
Chanajitt, R., Viriyasitavat, W., Choo, K.K.R.: Forensic analysis and security assessment of android m-banking apps. Aust. J. Forensic Sci. 50(1), 3–19 (2018). https://doi.org/10.1080/00450618.2016.1182589
Chen, J., Wang, C., Zhao, Z., Chen, K., Du, R., Ahn, G.J.: Uncovering the face of android ransomware: characterization and real-time detection. IEEE Trans. Inf. Forensics Secur. (2018). https://doi.org/10.1109/TIFS.2017.2787905
Damodaran, A., Troia, F.D., Visaggio, C.A., Austin, T.H., Stamp, M.: A comparison of static, dynamic, and hybrid analysis for malware detection. J. Comput. Virol. Hacking Tech. 13(1), 1–12 (2017). https://doi.org/10.1007/s11416-015-0261-z
Erturk, E.: A case study in open source software security and privacy: android adware. In: World Congress on Internet Security (WorldCIS-2012) (2012)
Hashemi, M.: Enlarging smaller images before inputting into convolutional neural network: zero-padding vs. interpolation. J. Big Data 6(1), 98 (2019). https://doi.org/10.1186/s40537-019-0263-7
Hegedus, J., Miche, Y., Ilin, A., Lendasse, A.: Methodology for behavioral-based malware analysis and detection using random projections and k-nearest neighbors classifiers. In: 2011 Seventh International Conference on Computational Intelligence and Security, pp. 1016–1023 (2011). https://doi.org/10.1109/CIS.2011.227
Iadarola, G., Martinelli, F., Mercaldo, F., Santone, A.: Formal methods for android banking malware analysis and detection. In: 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), pp. 331–336 (2019). https://doi.org/10.1109/IOTSMS48152.2019.8939172
Jeong, Y.s., Lee, H.t., Cho, S.j., Han, S., Park, M.: A kernel-based monitoring approach for analyzing malicious behavior on android. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp. 1737–1738. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2554850.2559915
Khariwal, K., Singh, J., Arora, A.: Ipdroid: android malware detection using intents and permissions. In: 2020 4th Conference on Smart Trends in System Security and Sustainability (WorldS4), pp. 197–202 (2020). https://doi.org/10.1109/WorldS450073.2020.9210414
Mahdavifar, S., Abdul Kadir, A.F., Fatemi, R., Alhadidi, D., Ghorbani, A.A.: Dynamic android malware category classification using semi-supervised deep learning. In: 2020 IEEE International Conference on Cyber Science and Technology Congress (CyberSciTech) (2020). https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
Martinelli, F., Mercaldo, F., Nardone, V., Santone, A.: Twinkle twinkle little droiddream, how i wonder what you are? In: 2017 IEEE Workshop on Metrology for AeroSpace (MetroAeroSpace) (2017). https://doi.org/10.1109/MetroAeroSpace.2017.7999579
Or-Meir, O., Nissim, N., Elovici, Y., Rokach, L.: Dynamic malware analysis in the modern era-a state of the art survey. ACM (2019). https://doi.org/10.1145/3329786
Saad, M.H., Serageldin, A., Salama, G.I.: Android spyware disease and medication. In: 2015 Second International Conference on Information Security and Cyber Forensics (InfoSec), pp. 118–125 (2015). https://doi.org/10.1109/InfoSec.2015.7435516
Santos, I., Brezo, F., Nieves, J., Penya, Y.K., Sanz, B., Laorden, C., Bringas, P.G.: Idea: Opcode-Sequence-Based Malware Detection. In: Massacci, F., Wallach, D., Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 35–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11747-3_3
Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G., Álvarez, G.: PUMA: permission usage to detect malware in android. In: International Joint Conference CISIS’12-ICEUTE’12-SOCO’12 Special Sessions, pp. 289–298. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33018-6_30
Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: Andromaly: a behavioral malware detection framework for android devices. J. Intell. Inf. Syst. 38(1), 161–190 (2012). https://doi.org/10.1007/s10844-010-0148-x
Sharma, A., Dash, S.K.: Mining API calls and permissions for android malware detection. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) Cryptology and Network Security, pp. 191–205. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-12280-9_13
Statista: global mobile OS market share 2023 (2023). https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
Su, X., Chuah, M., Tan, G.: Smartphone dual defense protection framework: detecting malicious applications in android markets. In: 2012 8th International Conference on Mobile Ad-hoc and Sensor Networks (MSN) (2012). https://doi.org/10.1109/MSN.2012.43
Vidyarthi, D., Kumar, C., Rakshit, S., Chansarkar, S.: Static malware analysis to identify ransomware properties. Int. J. Comput. Sci. Issues 16(3), 10–17 (2019). https://doi.org/10.5281/zenodo.3252963
Wu, D.J., Mao, C.H., Wei, T.E., Lee, H.M., Wu, K.P.: DroidMat: android malware detection through manifest and API calls tracing. In: 2012 Seventh Asia Joint Conference on Information Security, pp. 62–69 (2012)
Yerima, S.Y., Sezer, S., McWilliams, G., Muttik, I.: A new android malware detection approach using Bayesian classification. In: 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), pp. 121–128 (2013). https://doi.org/10.1109/AINA.2013.88
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Miranda-Garcia, A., Pastor-López, I., Urquijo, B.S., de la Puerta, J.G., Bringas, P.G. (2023). Bytecode-Based Android Malware Detection Applying Convolutional Neural Networks. In: García Bringas, P., et al. International Joint Conference 16th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2023) 14th International Conference on EUropean Transnational Education (ICEUTE 2023). CISIS ICEUTE 2023 2023. Lecture Notes in Networks and Systems, vol 748. Springer, Cham. https://doi.org/10.1007/978-3-031-42519-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-42519-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42518-9
Online ISBN: 978-3-031-42519-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)