Abstract
Recently, the idea of applying process data analysis over relational databases (DBs) has been investigated in the process mining field resulting into different DB schemas that can be used to effectively store process data coming from Process-Aware Information Systems (PAISs). However, although SQL queries are particularly suitable to check declarative rules over traces stored in a DB, a deep analysis of how the existing instruments for SQL-based process mining can be effectively used for process analysis tasks based on declarative process modeling languages is still missing. In this paper, we present a full-fledged framework based on SQL queries over relational DBs for different declarative process mining use cases, i.e., process discovery, conformance checking, and query checking. The framework is used to benchmark different SQL-based solutions for declarative process mining, using synthetic and real-life event logs, with the aim of exploring their strengths and weaknesses.
The work of F. Riva was funded by the PRISMA project of the Free University of Bozen-Bolzano and by the Estonian Research Council (PRG1226). The work of D. Benvenuti and A. Marrella was supported by the PNRR MUR project PE0000013-FAIR, the H2020 project DataCloud (Grant number 101016835), and the Sapienza project DISPIPE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Here the support corresponds to the event support introduced in [7].
- 3.
We set a timeout on the population scripts and each script that did not end within 24 h was stopped. Dashes in the tables mean that the corresponding scripts reached the timeout.
- 4.
We set a timeout of 30 min on the query scripts.
References
Aamer, H., Montali, M., Van den Bussche, J.: What Can Database Query Processing Do for Instance-Spanning Constraints? CoRR abs/2206.00140 (2022)
Alman, A., Di Ciccio, C., Haas, D., Maggi, F.M., Nolte, A.: Rule Mining with RuM. In: 2nd International Conference on Process Mining, ICPM 2020, Padua, Italy, 4–9 October 2020, pp. 121–128 (2020)
Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)
Calì, A., Calvanese, D., Lenzerini, M.: Data integration under integrity constraints. In: Seminal Contributions to Information Systems Engineering, 25 Years of CAiSE, pp. 335–352. Springer (2013). https://doi.org/10.1007/978-3-642-36926-1
Cecconi, A., De Giacomo, G., Di Ciccio, C., Maggi, F.M., Mendling, J.: Measuring the interestingness of temporal logic behavioral specifications in process mining. Inf. Syst. 107, 101920 (2022)
Chiariello, F., Maggi, F.M., Patrizi, F.: ASP-Based Declarative Process Mining. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2022)
Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM Trans. Manag. Inf. Syst. 5(4), 24:1–24:37 (2015)
Donadello, I., Riva, F., Maggi, F.M., Shikhizada, A.: Declare4Py: a python library for declarative process mining. In: Proceedings of the Best Dissertation Award, Doctoral Consortium, and Demonstration & Resources Track at BPM 2022, pp. 117–121 (2022)
van Dongen, B.F.: BPI Challenge 2012 (Apr 2012)
van Dongen, B.F.: BPI Challenge 2017 (Feb 2017)
van Dongen, B.F.: International Declarations Log. BPI Challenge 2020 (Mar 2020)
van Dongen, B.F.: Travel Permits Log. BPI Challenge 2020 (Mar 2020)
van Dongen, B.F., Shabani, S.: Relational XES: data management for process mining. In: CAiSE Forum 2015, pp. 169–176 (2015)
Ewen, S., Kache, H., Markl, V., Raman, V.: Progressive query optimization for federated queries. In: Advances in Database Technology - EDBT 2006. vol. 3896, pp. 847–864 (2006)
Ghahfarokhi, A., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL: A Standard for Object-Centric Event Logs, pp. 169–175 (07 2021)
Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-organizational workflows as timed Dynamic Condition Response Graphs. J. Log. Algebr. Program. 82(5–7), 164–185 (2013)
Kulkarni, K.G., Michels, J.: Temporal features in SQL: 2011. SIGMOD Rec. 41(3), 34–43 (2012)
de Leoni, M., Mannhardt, F.: Road Traffic Fine Management Process (Feb 2015)
Li, G., de Murillas, E.G.L., de Carvalho, R.M., van der Aalst, W.M.P.: Extracting object-centric event logs to support process mining on databases. In: Information Systems in the Big Data Era, pp. 182–199 (2018)
Maggi, F.M.: Discovering metric temporal business constraints from event logs. In: Johansson, B., Andersson, B., Holmberg, N. (eds.) BIR 2014. LNBIP, vol. 194, pp. 261–275. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11370-8_19
Maggi, F.M.: Declarative Process Mining. In: Sakr, S., Zomaya, A.Y. (eds) Encyclopedia of Big Data Technologies. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77525-8_92
Mannhardt, F.: Sepsis Cases - Event Log (Dec 2016)
Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: IEEE International EDOC Conference 2007, pp. 287–300 (2007)
Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), pp. 287–300 (2007)
Polyvyanyy, A., ter Hofstede, A.H.M., La Rosa, M., Ouyang, C., Pika, A.: Process query language: Design, implementation, and evaluation. CoRR abs/1909.09543 (2019)
Räim, M., Di Ciccio, C., Maggi, F.M., Mecella, M., Mendling, J.: Log-based understanding of business processes through temporal logic query checking. In: Meersman, R. (ed.) OTM 2014. LNCS, vol. 8841, pp. 75–92. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45563-0_5
Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient and Customisable declarative process mining with SQL. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 290–305. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_18
Schönig, S.: SQL Queries for Declarative Process Mining on Event Logs of Relational Databases. CoRR abs/1512.00196 (2015)
Schönig, S., Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovery of multi-perspective declarative process models. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 87–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-0_6
Schönig, S., Di Ciccio, C., Mendling, J.: Configuring SQL-based process mining for performance and storage optimisation. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 94–97. SAC 2019 (2019)
Syamsiyah, A., van Dongen, B.F., van der Aalst, W.M.P.: DB-XES: enabling process discovery in the large. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA 2016. LNBIP, vol. 307, pp. 53–77. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74161-1_4
Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Information Systems Evolution - CAiSE Forum. vol. 72, pp. 60–75 (2010)
Zeising, M., Schönig, S., Jablonski, S.: Towards a Common Platform for the Support of Routine and Agile Business Processes. In: Collaborative Computing: Networking, Applications and Worksharing (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Riva, F., Benvenuti, D., Maggi, F.M., Marrella, A., Montali, M. (2023). An SQL-Based Declarative Process Mining Framework for Analyzing Process Data Stored in Relational Databases. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds) Business Process Management Forum. BPM 2023. Lecture Notes in Business Information Processing, vol 490. Springer, Cham. https://doi.org/10.1007/978-3-031-41623-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-41623-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41622-4
Online ISBN: 978-3-031-41623-1
eBook Packages: Computer ScienceComputer Science (R0)