Skip to main content

Cuckoo Hashing in Cryptography: Optimal Parameters, Robustness and Applications

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14084))

Included in the following conference series:

  • 1661 Accesses

Abstract

Cuckoo hashing is a powerful primitive that enables storing items using small space with efficient querying. At a high level, cuckoo hashing maps n items into b entries storing at most \(\ell \) items such that each item is placed into one of k randomly chosen entries. Additionally, there is an overflow stash that can store at most s items. Many cryptographic primitives rely upon cuckoo hashing to privately embed and query data where it is integral to ensure small failure probability when constructing cuckoo hashing tables as it directly relates to the privacy guarantees.

As our main result, we present a more query-efficient cuckoo hashing construction using more hash functions. For construction failure probability \(\epsilon \), the query overhead of our scheme is \(O(1 + \sqrt{\log (1/\epsilon )/\log n})\). Our scheme has quadratically smaller query overhead than prior works for any target failure probability \(\epsilon \). We also prove lower bounds matching our construction. Our improvements come from a new understanding of the locality of cuckoo hashing failures for small sets of items.

We also initiate the study of robust cuckoo hashing where the input set may be chosen with knowledge of the hash functions. We present a cuckoo hashing scheme using more hash functions with query overhead \(\tilde{O}(\log \lambda )\) that is robust against \(\textsf{poly}(\lambda )\) adversaries. Furthermore, we present lower bounds showing that this construction is tight and that extending previous approaches of large stashes or entries cannot obtain robustness except with \(\varOmega (n)\) query overhead.

As applications of our results, we obtain improved constructions for batch codes and PIR. In particular, we present the most efficient explicit batch code and blackbox reduction from single-query PIR to batch PIR.

The full version of this paper may be found at [66].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, A., et al.: Communication-computation trade-offs in PIR. In: 30th USENIX Security (2021)

    Google Scholar 

  2. Angel, S., Chen, H., Laine, K., Setty, S.: PIR with compressed queries and amortized query processing. In: 2018 IEEE S &P (2018)

    Google Scholar 

  3. Angel, S., Setty, S.: Unobservable communication over fully untrusted infrastructure. In: 12th USENIX OSDI (2016)

    Google Scholar 

  4. Arbitman, Y., Naor, M., Segev, G.: De-amortized cuckoo hashing: provable worst-case performance and experimental results. In: ICALP (2009)

    Google Scholar 

  5. Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Peserico, E., Shi, E.: OptORAMa: optimal oblivious RAM. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 403–432. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_14

    Chapter  Google Scholar 

  6. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption: optimal locality in linear space via two-dimensional balanced allocations. In: ACM STOC (2016)

    Google Scholar 

  7. Aumüller, M., Dietzfelbinger, M., Woelfel, P.: Explicit and efficient hash families suffice for cuckoo hashing with a stash. Algorithmica 70(3), 428–456 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. In: ACM Symposium on Theory of Computing (1994)

    Google Scholar 

  9. Ben-Eliezer, O., Jayaram, R., Woodruff, D.P., Yogev, E.: A framework for adversarially robust streaming algorithms. In: ACM PODS (2020)

    Google Scholar 

  10. Berman, I., Haitner, I., Komargodski, I., Naor, M.: Hardness-preserving reductions via cuckoo hashing. J. Cryptol. 32(2), 361–392 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bossuat, A., Bost, R., Fouque, P.-A., Minaud, B., Reichle, M.: SSE and SSD: page-efficient searchable symmetric encryption. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 157–184. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_6

    Chapter  Google Scholar 

  12. Boyle, E., LaVigne, R., Vaikuntanathan, V.: Adversarially robust property-preserving hash functions. In: 10th Innovations in Theoretical Computer Science (2019)

    Google Scholar 

  13. Breslow, A.D., Zhang, D.P., Greathouse, J.L., Jayasena, N., Tullsen, D.M.: Horton tables: fast hash tables for in-memory data-intensive computing. In: 2016 USENIX Annual Technical Conference (2016)

    Google Scholar 

  14. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic encryption with malicious security. In: ACM CCS (2018)

    Google Scholar 

  15. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: ACM CCS (2017)

    Google Scholar 

  16. Chor, B., Gilboa, N.: Computationally private information retrieval. In: ACM Symposium on Theory of Computing (1997)

    Google Scholar 

  17. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 53, 68–73 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Clayton, D., Patton, C., Shrimpton, T.: Probabilistic data structures in adversarial environments. In: ACM CCS (2019)

    Google Scholar 

  19. Cong, K., et al.: Labeled psi from homomorphic encryption with reduced computation and communication. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 1135–1150 (2021)

    Google Scholar 

  20. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact discovery. Proc. Priv. Enh. Technol. 2018(4), 159–178 (2018)

    Google Scholar 

  21. Devroye, L., Morin, P.: Cuckoo hashing: further analysis. Inf. Process. Lett. 86(4), 215–219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., Rink, M.: Tight thresholds for cuckoo hashing via XORSAT. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 213–225. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2_19

    Chapter  Google Scholar 

  23. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly packed constant size bins. Theoret. Comput. Sci. 380, 47–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Duong, T., Phan, D.H., Trieu, N.: Catalic: delegated PSI cardinality with applications to contact tracing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 870–899. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_29

    Chapter  Google Scholar 

  25. Fan, B., Andersen, D.G., Kaminsky, M.: MemC3: compact and concurrent MemCache with dumber caching and smarter hashing. In: USENIX NSDI (2013)

    Google Scholar 

  26. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: practically better than bloom. In: Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies (2014)

    Google Scholar 

  27. Fleischhacker, N., Larsen, K.G., Simkin, M.: Property-preserving hash functions for hamming distance from standard assumptions. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13276, pp. 764–781. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_26

    Chapter  Google Scholar 

  28. Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.: Space efficient hash tables with worst case constant access time. Theory Comput. Syst. 38, 229–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fountoulakis, N., Panagiotou, K., Steger, A.: On the insertion time of cuckoo hashing. SIAM J. Comput. 42(6), 2156–2181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Frieze, A., Melsted, P., Mitzenmacher, M.: An analysis of random-walk cuckoo hashing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM -2009. LNCS, vol. 5687, pp. 490–503. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03685-9_37

    Chapter  Google Scholar 

  31. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value stores and amplification for private set intersection. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 395–425. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_14

    Chapter  Google Scholar 

  32. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_65

    Chapter  Google Scholar 

  33. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_46

    Chapter  Google Scholar 

  34. Groth, J., Kiayias, A., Lipmaa, H.: Multi-query computationally-private information retrieval with constant communication rate. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_7

    Chapter  Google Scholar 

  35. Hall, P.: On representatives of subsets. In: Classic Papers in Combinatorics (1987)

    Google Scholar 

  36. Hardt, M., Woodruff, D.P.: How robust are linear sketches to adaptive inputs? In: ACM Symposium on Theory of Computing (2013)

    Google Scholar 

  37. Hemenway Falk, B., Noble, D., Ostrovsky, R.: Alibi: a flaw in cuckoo-hashing based hierarchical ORAM schemes and a solution. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 338–369. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_12

    Chapter  MATH  Google Scholar 

  38. Holmgren, J., Liu, M., Tyner, L., Wichs, D.: Nearly optimal property preserving hashing. Cryptology ePrint Archive (2022)

    Google Scholar 

  39. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applications. In: ACM Symposium on Theory of Computing (2004)

    Google Scholar 

  40. Khosla, M.: Balls into bins made faster. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 601–612. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4_51

    Chapter  Google Scholar 

  41. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing with a stash. SIAM J. Comput. 39(4), 1543–1561 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in) security of hash-based oblivious ram and a new balancing scheme. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (2012)

    Google Scholar 

  43. Kutzelnigg, R.: Bipartite random graphs and cuckoo hashing. Discrete Math. Theor. Comput. Sci. (2006)

    Google Scholar 

  44. Menon, S.J., Wu, D.J.: Spiral: fast, high-rate single-server PIR via FHE composition. Cryptology ePrint Archive (2022)

    Google Scholar 

  45. Minaud, B., Papamanthou, C.: Note on generalized cuckoo hashing with a stash. arXiv preprint arXiv:2010.01890 (2020)

  46. Mironov, I., Naor, M., Segev, G.: Sketching in adversarial environments. SIAM J. Comput. 40(6), 1845–1870 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mohassel, P., Rindal, P., Rosulek, M.: Fast database joins and PSI for secret shared data. In: ACM CCS (2020)

    Google Scholar 

  48. Mughees, M.H., Chen, H., Ren, L.: OnionPIR: response efficient single-server PIR. In: ACM CCS (2021)

    Google Scholar 

  49. Naor, M., Segev, G., Wieder, U.: History-independent cuckoo hashing. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 631–642. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_51

    Chapter  Google Scholar 

  50. Naor, M., Yogev, E.: Bloom filters in adversarial environments. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 565–584. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_28

    Chapter  MATH  Google Scholar 

  51. Pagh, A., Pagh, R.: Uniform hashing in constant time and optimal space. SIAM J. Comput. 38(1), 85–96 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51, 122–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Patel, S., Persiano, G., Raykova, M., Yeo, K.: PanORAMa: oblivious RAM with logarithmic overhead. In: IEEE FOCS (2018)

    Google Scholar 

  54. Patel, S., Persiano, G., Yeo, K.: What storage access privacy is achievable with small overhead? In: ACM PODS (2019)

    Google Scholar 

  55. Patel, S., Persiano, G., Yeo, K., Yung, M.: Mitigating leakage in secure cloud-hosted data structures: Volume-hiding for multi-maps via hashing. In: CCS (2019)

    Google Scholar 

  56. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_27

    Chapter  Google Scholar 

  57. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_25

    Chapter  Google Scholar 

  58. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: USENIX Security Symposium (2015)

    Google Scholar 

  59. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_5

    Chapter  Google Scholar 

  60. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension. ACM Trans. Priv. Secur. (TOPS) 21(2), 1–35 (2018)

    Article  Google Scholar 

  61. Polychroniou, O., Raghavan, A., Ross, K.A.: Rethinking SIMD vectorization for in-memory databases. In: ACM SIGMOD (2015)

    Google Scholar 

  62. Pǎtraşcu, M., Thorup, M.: The power of simple tabulation hashing. J. ACM (JACM) 59, 1–50 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Rawat, A.S., Song, Z., Dimakis, A.G., Gál, A.: Batch codes through dense graphs without short cycles. IEEE Trans. Inf. Theory 62, 1592–1604 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. Richa, A.W., Mitzenmacher, M., Sitaraman, R.: The power of two random choices: a survey of techniques and results. Combinatorial Optimization (2001)

    Google Scholar 

  65. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed Vector-OLE: improved constructions and implementation. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 1055–1072 (2019)

    Google Scholar 

  66. Yeo, K.: Cuckoo hashing in cryptography: optimal parameters, robustness and applications. Cryptology ePrint Archive, Paper 2022/1455 (2022). https://eprint.iacr.org/2022/1455

  67. Yeo, K.: Lower bounds for (batch) PIR with private preprocessing. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part I. LNCS, vol. 14004, pp. 518–550. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30545-0_18

    Chapter  Google Scholar 

  68. Zhang, K., Wang, K., Yuan, Y., Guo, L., Lee, R., Zhang, X.: Mega-KV: a case for GPUs to maximize the throughput of in-memory key-value stores. VLDB 8, 1226–1237 (2015)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Mo (Helen) Zhou for feedback on earlier manuscripts and Daniel Noble for pointing out an error and fix in a proof. This research was supported in part by the Algorand Centres of Excellence programme managed by Algorand Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are solely those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Yeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yeo, K. (2023). Cuckoo Hashing in Cryptography: Optimal Parameters, Robustness and Applications. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14084. Springer, Cham. https://doi.org/10.1007/978-3-031-38551-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38551-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38550-6

  • Online ISBN: 978-3-031-38551-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics