Skip to main content

Spatial Correlations in the Qubit Properties of D-Wave 2000Q Measured and Simulated Qubit Networks

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2023)

Abstract

We show strong positive spatial correlations in the qubits of a D-Wave 2000Q quantum annealing chip that are connected to qubits outside their own unit cell. By simulating the dynamics of spin networks, we then show that correlation between nodes is affected by a number of factors. The different connectivity of qubits within the network means that information transfer is not straightforward even when all the qubit-qubit couplings have equal weighting. The similarity between connected nodes is further changed when the couplings’ strength is scaled according to the physical length of the connections (here to simulate dipole-dipole interactions). This highlights the importance of understanding the architectural features and potentially unprogrammed interactions/connections that can divert the performance of a quantum system away from the idealised model of identical qubits and couplings across the chip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, C., Doherty, A.C., Landahl, A.J.: Continuous quantum error correction via quantum feedback control. Phys. Rev. A 65(4), 042301 (2002)

    Article  Google Scholar 

  2. Albash, T., Martin-Mayor, V., Hen, I.: Analog errors in Ising machines. Quant. Sci. Technol. 4(2), 02LT03 (2019)

    Google Scholar 

  3. Bandic, M., Feld, S., Almudever, C.G.: Full-stack quantum computing systems in the NISQ era: algorithm-driven and hardware-aware compilation techniques. In: 2022 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 1–6. IEEE (2022)

    Google Scholar 

  4. Barbosa, A., Pelofske, E., Hahn, G., Djidjev, H.N.: Optimizing embedding-related quantum annealing parameters for reducing hardware bias. In: Ning, L., Chau, V., Lau, F. (eds.) PAAP 2020. CCIS, vol. 1362, pp. 162–173. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0010-4_15

    Chapter  Google Scholar 

  5. Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen, H., Kottmann, J.S., Menke, T., Mok, W.K., Sim, S., Kwek, L.C., Aspuru-Guzik, A.: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94(1), 015004 (2022)

    Google Scholar 

  6. Chancellor, N., Zohren, S., Warburton, P.A.: Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture. NPJ Quant. Inf. 3(1), 1–7 (2017)

    Google Scholar 

  7. D-Wave Systems: D-Wave NetworkX (2021)

    Google Scholar 

  8. Geary, R.C.: The contiguity ratio and statistical mapping. Incorp. Stat. 5(3), 115–146 (1954)

    Google Scholar 

  9. Harris, R., et al.: Compound Josephson-junction coupler for flux qubits with minimal crosstalk. Phys. Rev. B: Condens. Matter 80(5), 052506 (2009)

    Article  Google Scholar 

  10. Mortimer, L., Estarellas, M.P., Spiller, T.P., D’Amico, I.: Evolutionary computation for adaptive quantum device design. Adv. Quantum Technol. 4(8) (2021)

    Google Scholar 

  11. Nelson, J., Vuffray, M., Lokhov, A.Y., Albash, T., Coffrin, C.: High-quality thermal Gibbs sampling with quantum annealing hardware. Phys. Rev. Appl. 17(4), 044046 (2022)

    Article  Google Scholar 

  12. Nelson, J., Vuffray, M., Lokhov, A.Y., Coffrin, C.: Single-qubit fidelity assessment of quantum annealing hardware. IEEE Trans. Quantum Eng. 2, 1–10 (2021)

    Article  MATH  Google Scholar 

  13. Noiri, A., et al.: A fast quantum interface between different spin qubit encodings. Nat. Commun. 9(1), 5066 (2018)

    Article  Google Scholar 

  14. Osada, A., Taniguchi, K., Shigefuji, M., Noguchi, A.: Feasibility study on ground-state cooling and single-phonon readout of trapped electrons using hybrid quantum systems. Phys. Rev. Res. 4(3), 033245 (2022)

    Article  Google Scholar 

  15. Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, 3243 (2014)

    Article  Google Scholar 

  16. Raymond, J., Ndiaye, N., Rayaprolu, G., King, A.D.: Improving performance of logical qubits by parameter tuning and topology compensation. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 295–305 (2020)

    Google Scholar 

  17. Rey, S.J., Anselin, L.: PySAL: a Python library of spatial analytical methods. In: Fischer, M.M., Getis, A. (eds.) Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications, pp. 175–193. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03647-7_11

  18. Ronke, R., Spiller, T.P., D’Amico, I.: Effect of perturbations on information transfer in spin chains. Phys. Rev. A 83(1), 012325 (2011)

    Article  Google Scholar 

  19. Venegas-Andraca, S.E., Cruz-Santos, W., McGeoch, C., Lanzagorta, M.: A cross-disciplinary introduction to quantum annealing-based algorithms. Contemp. Phys. 59(02), 174–196 (2018)

    Article  Google Scholar 

  20. Zbinden, S., Bärtschi, A., Djidjev, H., Eidenbenz, S.: Embedding algorithms for quantum annealers with Chimera and Pegasus connection topologies. In: Sadayappan, P., Chamberlain, B., Juckeland, G., Ltaief, H. (eds.) ISC High Performance 2020, vol. 12151, pp. 187–206. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50743-5_10

  21. Zhou, X., Lin, H.: Geary’s C. In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS, pp. 329–330. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-35973-1_446

Download references

Acknowledgements

The authors wish to acknowledge Defence Science Technical Laboratory (Dstl) who are funding this research. We thank Carleton Coffrin and his colleagues at the Los Alamos National Laboratory for sharing the data from their Single Qubit Fidelity Assessment.

Content includes material subject to ©Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gov.uk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, J., Stepney, S., D’Amico, I. (2023). Spatial Correlations in the Qubit Properties of D-Wave 2000Q Measured and Simulated Qubit Networks. In: Genova, D., Kari, J. (eds) Unconventional Computation and Natural Computation. UCNC 2023. Lecture Notes in Computer Science, vol 14003. Springer, Cham. https://doi.org/10.1007/978-3-031-34034-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34034-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34033-8

  • Online ISBN: 978-3-031-34034-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics