Abstract
We show strong positive spatial correlations in the qubits of a D-Wave 2000Q quantum annealing chip that are connected to qubits outside their own unit cell. By simulating the dynamics of spin networks, we then show that correlation between nodes is affected by a number of factors. The different connectivity of qubits within the network means that information transfer is not straightforward even when all the qubit-qubit couplings have equal weighting. The similarity between connected nodes is further changed when the couplings’ strength is scaled according to the physical length of the connections (here to simulate dipole-dipole interactions). This highlights the importance of understanding the architectural features and potentially unprogrammed interactions/connections that can divert the performance of a quantum system away from the idealised model of identical qubits and couplings across the chip.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn, C., Doherty, A.C., Landahl, A.J.: Continuous quantum error correction via quantum feedback control. Phys. Rev. A 65(4), 042301 (2002)
Albash, T., Martin-Mayor, V., Hen, I.: Analog errors in Ising machines. Quant. Sci. Technol. 4(2), 02LT03 (2019)
Bandic, M., Feld, S., Almudever, C.G.: Full-stack quantum computing systems in the NISQ era: algorithm-driven and hardware-aware compilation techniques. In: 2022 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 1–6. IEEE (2022)
Barbosa, A., Pelofske, E., Hahn, G., Djidjev, H.N.: Optimizing embedding-related quantum annealing parameters for reducing hardware bias. In: Ning, L., Chau, V., Lau, F. (eds.) PAAP 2020. CCIS, vol. 1362, pp. 162–173. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0010-4_15
Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen, H., Kottmann, J.S., Menke, T., Mok, W.K., Sim, S., Kwek, L.C., Aspuru-Guzik, A.: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94(1), 015004 (2022)
Chancellor, N., Zohren, S., Warburton, P.A.: Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture. NPJ Quant. Inf. 3(1), 1–7 (2017)
D-Wave Systems: D-Wave NetworkX (2021)
Geary, R.C.: The contiguity ratio and statistical mapping. Incorp. Stat. 5(3), 115–146 (1954)
Harris, R., et al.: Compound Josephson-junction coupler for flux qubits with minimal crosstalk. Phys. Rev. B: Condens. Matter 80(5), 052506 (2009)
Mortimer, L., Estarellas, M.P., Spiller, T.P., D’Amico, I.: Evolutionary computation for adaptive quantum device design. Adv. Quantum Technol. 4(8) (2021)
Nelson, J., Vuffray, M., Lokhov, A.Y., Albash, T., Coffrin, C.: High-quality thermal Gibbs sampling with quantum annealing hardware. Phys. Rev. Appl. 17(4), 044046 (2022)
Nelson, J., Vuffray, M., Lokhov, A.Y., Coffrin, C.: Single-qubit fidelity assessment of quantum annealing hardware. IEEE Trans. Quantum Eng. 2, 1–10 (2021)
Noiri, A., et al.: A fast quantum interface between different spin qubit encodings. Nat. Commun. 9(1), 5066 (2018)
Osada, A., Taniguchi, K., Shigefuji, M., Noguchi, A.: Feasibility study on ground-state cooling and single-phonon readout of trapped electrons using hybrid quantum systems. Phys. Rev. Res. 4(3), 033245 (2022)
Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, 3243 (2014)
Raymond, J., Ndiaye, N., Rayaprolu, G., King, A.D.: Improving performance of logical qubits by parameter tuning and topology compensation. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 295–305 (2020)
Rey, S.J., Anselin, L.: PySAL: a Python library of spatial analytical methods. In: Fischer, M.M., Getis, A. (eds.) Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications, pp. 175–193. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03647-7_11
Ronke, R., Spiller, T.P., D’Amico, I.: Effect of perturbations on information transfer in spin chains. Phys. Rev. A 83(1), 012325 (2011)
Venegas-Andraca, S.E., Cruz-Santos, W., McGeoch, C., Lanzagorta, M.: A cross-disciplinary introduction to quantum annealing-based algorithms. Contemp. Phys. 59(02), 174–196 (2018)
Zbinden, S., Bärtschi, A., Djidjev, H., Eidenbenz, S.: Embedding algorithms for quantum annealers with Chimera and Pegasus connection topologies. In: Sadayappan, P., Chamberlain, B., Juckeland, G., Ltaief, H. (eds.) ISC High Performance 2020, vol. 12151, pp. 187–206. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50743-5_10
Zhou, X., Lin, H.: Geary’s C. In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS, pp. 329–330. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-35973-1_446
Acknowledgements
The authors wish to acknowledge Defence Science Technical Laboratory (Dstl) who are funding this research. We thank Carleton Coffrin and his colleagues at the Los Alamos National Laboratory for sharing the data from their Single Qubit Fidelity Assessment.
Content includes material subject to ©Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gov.uk.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Park, J., Stepney, S., D’Amico, I. (2023). Spatial Correlations in the Qubit Properties of D-Wave 2000Q Measured and Simulated Qubit Networks. In: Genova, D., Kari, J. (eds) Unconventional Computation and Natural Computation. UCNC 2023. Lecture Notes in Computer Science, vol 14003. Springer, Cham. https://doi.org/10.1007/978-3-031-34034-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-34034-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34033-8
Online ISBN: 978-3-031-34034-5
eBook Packages: Computer ScienceComputer Science (R0)