Abstract
The Shapes Constraint Language (SHACL) is a W3C recommendation which allows to represent constraints in RDF– shape graphs –, and validate RDF data graphs against these constraints. A SHACL validator produces a validation report whose result is false for a shape graph as soon as there is at least one node in the RDF data graph that does not conform to the shape. This Boolean result of the validation of an RDF data graph against an RDF shape graph is not suitable for discovering new high-potential shapes from the RDF data. In this paper, we propose a probabilistic framework to accept shapes with a realistic proportion of nodes in an RDF data graph that does not conform to it. Based on this framework, we propose an extension of the SHACL validation report to express a set of metrics including the generality and likelihood of shapes and we define a method to test a shape as a hypothesis test. Finally, we present the results of experiments conducted to validate a test RDF data graph against a set of shapes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bogaerts, B., Jakubowski, M., den Bussche, J.V.: Expressiveness of SHACL features. In: ICDT (2022)
Bogaerts, B., Jakubowski, M., Van den Bussche, J.: SHACL: a description logic in disguise (2021)
Boneva, I., Labra Gayo, J.E., Prud’hommeaux, E.G.: Semantics and validation of shapes schemas for RDF. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 104–120. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_7
Cadorel, L., Tettamanzi, A.: Mining RDF data of COVID-19 scientific literature for interesting association rules. In: 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), pp. 145–152 (2020)
Cimmino, A., Fernández-Izquierdo, A., García-Castro, R.: Astrea: automatic generation of SHACL shapes from ontologies. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 497–513. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_29
Corby, O., Faron Zucker, C.: STTL: a SPARQL-based transformation Language for RDF. In: 11th International Conference on Web Information Systems and Technologies. Lisbon, Portugal (2015)
Corman, J., Florenzano, F., Reutter, J.L., Savković, O.: Validating Shacl constraints over a Sparql endpoint. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 145–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_9
Corman, J., Reutter, J.L., Savković, O.: Semantics and validation of recursive SHACL. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 318–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_19
Debruyne, C., McGlinn, K.: Reusable SHACL constraint components for validating geospatial linked data (short paper). In: GeoLD@ESWC (2021)
Fernandez-Álvarez, D., Labra-Gayo, J.E., Gayo-Avello, D.: Automatic extraction of shapes using sheXer. Knowl.-Based Syst. 238, 107975 (2022). https://doi.org/10.1016/j.knosys.2021.107975, https://www.sciencedirect.com/science/article/pii/S0950705121010972
Figuera, M., Rohde, P.D., Vidal, M.E.: Trav-SHACL: efficiently validating networks of SHACL constraints. In: Proceedings of the Web Conference 2021, pp. 3337–3348. WWW 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3442381.3449877
K Soman, R.: Modelling construction scheduling constraints using shapes constraint language (SHACL), pp. 351–358 (2019). https://doi.org/10.35490/EC3.2019.170
Kontokostas, D., Knublauch, H.: Shapes constraint language (SHACL). In: W3C Recommendation, W3C (2017). https://www.w3.org/TR/2017/REC-shacl-20170720/
Köcher, A., Vieira da Silva, L.M., Fay, A.: Constraint checking of skills using SHACL (2021)
Leinberger, M., Seifer, P., Rienstra, T., Lämmel, R., Staab, S.: Deciding SHACL shape containment through description logics reasoning. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12506, pp. 366–383. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-4_21
Michel, F., et al.: Covid-on-the-web: knowledge graph and services to advance COVID-19 research. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 294–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_19
Mihindukulasooriya, N., Rashid, M.R.A., Rizzo, G., García-Castro, R., Corcho, O., Torchiano, M.: RDF shape induction using knowledge base profiling, pp. 1952–1959. SAC 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3167132.3167341
Pandit, H., O’Sullivan, D., Lewis, D.: Using ontology design patterns to define SHACL shapes. In: WOP@ISWC, pp. 67–71. Monterey California, USA (2018)
Pareti, P., Konstantinidis, G.: A review of SHACL: from data validation to schema reasoning for RDF graphs. In: Šimkus, M., Varzinczak, I. (eds.) Reasoning Web. Declarative Artificial Intelligence. Reasoning Web 2021. Lecture Notes in Computer Science, vol. 13100, pp. 115–144. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-95481-9_6
Pareti, P., Konstantinidis, G., Norman, T.J., Şensoy, M.: SHACL constraints with inference rules. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 539–557. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_31
Alva Principe, R.A., Maurino, A., Palmonari, M., Ciavotta, M., Spahiu, B.: ABSTAT-HD: a scalable tool for profiling very large knowledge graphs. VLDB J., 1–26 (2021). https://doi.org/10.1007/s00778-021-00704-2
Rabbani, K., Lissandrini, M., Hose, K.: SHACL and ShEx in the wild: a community survey on validating shapes generation and adoption. In: Companion Proceedings of the Web Conference 2022, pp. 260–263. WWW 2022, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3487553.3524253
Wright, J., Rodríguez Méndez, S.J., Haller, A., Taylor, K., Omran, P.G.: Schímatos: a SHACL-based web-form generator for knowledge graph editing. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 65–80. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_5
Acknowledgements
This work has been partially founded by the 3IA Côte d’Azur “Investments in the Future” project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Felin, R., Faron, C., Tettamanzi, A.G.B. (2023). A Framework to Include and Exploit Probabilistic Information in SHACL Validation Reports. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-3-031-33455-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-33455-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33454-2
Online ISBN: 978-3-031-33455-9
eBook Packages: Computer ScienceComputer Science (R0)