Abstract
The Oxford Radar RobotCar dataset has recently become popular in evaluating LiDAR-based methods for place recognition. The Radar dataset is preferred over the original Oxford RobotCar dataset since it has better LiDAR sensors and location ground truth is available for all sequences. However, it turns out that the Radar dataset has serious issues with its ground truth and therefore experimental findings with this dataset can be misleading. We demonstrate how easily this can happen, by varying only the gallery sequence and keeping the training and test sequences fixed. Results of this experiment strongly indicate that the gallery selection is an important consideration for place recognition. However, the finding is a mistake and the difference between galleries can be explained by systematic errors in the ground truth. In this work, we propose a revised benchmark for LiDAR-based place recognition with the Oxford Radar RobotCar dataset. The benchmark includes fixed gallery, training and test sequences, corrected ground truth, and a strong baseline method. All data and code will be made publicly available to facilitate fair method comparison and development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, S., Vora, A., Pandey, G., Williams, W., Kourous, H., McBride, J.: Ford multi-AV seasonal dataset. Int. J. Robot. Res. 39(12), 1367–1376 (2020)
Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: TPAMI (2018)
Arandjelović, R., Zisserman, A.: DisLocation: scalable descriptor distinctiveness for location recognition. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 188–204. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_13
Barnes, D., Gadd, M., Murcutt, P., Newman, P., Posner, I.: The oxford radar robotcar dataset: a radar extension to the oxford RobotCar dataset. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Paris (2020)
Barnes, D., Posner, I.: Under the radar: learning to predict robust keypoints for odometry estimation and metric localisation in radar. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9484–9490. IEEE (2020)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Cao, B., Araujo, A., Sim, J.: Unifying deep local and global features for image search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 726–743. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_43
Carlevaris-Bianco, N., Ushani, A.K., Eustice, R.M.: University of Michigan north campus long-term vision and lidar dataset. Int. J. Robot. Res. 35(9), 1023–1035 (2016)
Cummins, M., Newman, P.: FAB-MAP: probabilistic localization and mapping in the space of appearance. Int. J. Robot. Res. 27(6), 647–665 (2008). https://doi.org/10.1177/0278364908090961
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR2005), vol. 1, pp. 886–893. IEEE (2005)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Gálvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Rob. 28(5), 1188–1197 (2012)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)
He, L., Wang, X., Zhang, H.: M2DP: a novel 3d point cloud descriptor and its application in loop closure detection. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 231–237. IEEE (2016)
Jeong, J., Cho, Y., Shin, Y.S., Roh, H., Kim, A.: Complex urban dataset with multi-level sensors from highly diverse urban environments. Int. J. Robot. Res. 38(6), 642–657 (2019)
Kim, G., Kim, A.: Scan context: egocentric spatial descriptor for place recognition within 3d point cloud map. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4802–4809. IEEE (2018)
Kim, G., Park, Y.S., Cho, Y., Jeong, J., Kim, A.: MulRan: multimodal range dataset for urban place recognition. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6246–6253. IEEE (2020)
Komorowski, J.: MinkLoc3d: point cloud based large-scale place recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2021)
Komorowski, J., Wysoczanska, M., Trzcinski, T.: Large-scale topological radar localization using learned descriptors. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13109, pp. 451–462. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92270-2_39
Liu, Z., et al.: LPD-NET: 3D point cloud learning for large-scale place recognition and environment analysis. In: ICCV (2019)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Lowry, S., et al.: Visual place recognition: a survey. IEEE Trans. Rob. 32(1), 1–19 (2016). https://doi.org/10.1109/TRO.2015.2496823
Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 Year, 1000 km: the Oxford RobotCar dataset. Int. J. Robot. Res. (IJRR) 36(1), 3–15 (2017)
Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with attentive deep local features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3456–3465 (2017)
Pandey, G., McBride, J.R., Eustice, R.M.: Ford campus vision and lidar data set. Int. J. Robot. Res. 30(13), 1543–1552 (2011)
Peltomäki, J., Alijani, F., Puura, J., Huttunen, H., Rahtu, E., Kämäräinen, J.K.: Evaluation of long-term LiDAR place recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Rep. (2021)
Pion, N., Humenberger, M., Csurka, G., Cabon, Y., Sattler, T.: Benchmarking image retrieval for visual localization. In: International Conference on 3D Vision (3DV) (2020)
Radenović, F., Tolias, G., Chum, O.: CNN Image retrieval learns from BoW: unsupervised fine-tuning with hard examples. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 3–20. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_1
Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. In: TPAMI (2018)
Ramezani, M., Wang, Y., Camurri, M., Wisth, D., Mattamala, M., Fallon, M.: The newer college dataset: handheld lidar, inertial and vision with ground truth. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020)
Rizzini, D.L., Galasso, F., Caselli, S.: Geometric relation distribution for place recognition. IEEE Robot. Autom. Lett. 4(2), 523–529 (2019)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)
Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: robust hierarchical localization at large scale. In: CVPR (2019)
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: CVPR (2020)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Steder, B., Grisetti, G., Burgard, W.: Robust place recognition for 3D range data based on point features. In: ICRA (2010)
Tang, T., Martini, D.D., Newman, P.: Get to the point: learning lidar place recognition and metric localisation using overhead imagery. In: Robotics: Science and Systems (RSS) (2021)
Torii, A., Arandjelovic, R., Sivic, J., Okutomi, M., Pajdla, T.: 24/7 place recognition by view synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1808–1817 (2015)
Torii, A., Sivic, J., Pajdla, T., Okutomi, M.: Visual place recognition with repetitive structures. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 883–890 (2013)
Uy, M.A., Lee, G.H.: PointNetVLAD: deep point cloud based retrieval for large-scale place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4470–4479 (2018)
Warburg, F., Hauberg, S., Lopex-Antequera, M., Gargallo, P., Kuang, Y., Civera, J.: Mapillary street-level sequences: a dataset for lifelong place recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Xie, S., Pan, C., Peng, Y., Liu, K., Ying, S.: Large-scale place recognition based on camera-lidar fused descriptor. Sensors 20(10), 2870 (2020)
Yin, H., Xu, X., Wang, Y., Xiong, R.: Radar-to-lidar: heterogeneous place recognition via joint learning. Front. Robot. AI 8, 661199 (2021)
Yin, P., et al.: Stabilize an unsupervised feature learning for lidar-based place recognition. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1162–1167. IEEE (2018)
Zhang, X., Wang, L., Su, Y.: Visual place recognition: a survey from deep learning perspective. Pattern Recogn. 113, 107760 (2020). https://doi.org/10.1016/j.patcog.2020.107760
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Peltomäki, J., Alijani, F., Puura, J., Huttunen, H., Rahtu, E., Kämäräinen, JK. (2023). LiDAR Place Recognition Evaluation with the Oxford Radar RobotCar Dataset Revised. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13885. Springer, Cham. https://doi.org/10.1007/978-3-031-31435-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-31435-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31434-6
Online ISBN: 978-3-031-31435-3
eBook Packages: Computer ScienceComputer Science (R0)