Abstract
The prevalence of various mobile devices translates into a proliferation of trajectory data that enables a broad range of applications such as POI recommendation, tour recommendation, urban transportation planning, and the next location prediction. However, trajectory data in real-world is often sparse, noisy and incomplete. To make the subsequent analysis more reliable, trajectory recovery is introduced as a pre-processing step and attracts increasing attention recently. In this paper, we propose a neural attention model based on graph convolutional networks, called TRILL, to enhance the accuracy of trajectory recovery. In particular, to capture global mobility patterns that reflect inherent spatio-temporal regularity in human mobilities, we construct a directed global location transition graph and model the mobility patterns of all the trajectories at point level using graph convolutional networks. Then, a self-attention layer and a window-based cross-attention layer are sequentially adopted to refine the representations of missing locations by considering intra-trajectory and inter-trajectory information, respectively. Meanwhile, an information aggregation layer is designed to leverage all the historical information. We conduct extensive experiments using real trajectory data, which verifies the superior performance of the proposed model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abu-El-Haija, S., Kapoor, A., Perozzi, B., Lee, J.: N-GCN: multi-scale graph convolution for semi-supervised node classification. In: UAI (2019)
Alwan, L.C., Roberts, H.V.: Time-series modeling for statistical process control. J. Bus. Econ. Stat. 6(1), 87–95 (1988)
Chen, G., Viana, A.C., Fiore, M., Sarraute, C.: Complete trajectory reconstruction from sparse mobile phone data. EPJ Data Sci. 8(1), 1–24 (2019). https://doi.org/10.1140/epjds/s13688-019-0206-8
Chen, M., Zuo, Y., Jia, X., Liu, Y., Yu, X., Zheng, K.: CEM: a convolutional embedding model for predicting next locations. TITS 22, 3349–3358 (2021)
Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: KDD (2011)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2019)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2021)
Feng, J., et al.: Deepmove: predicting human mobility with attentional recurrent networks. In: WWW (2018)
Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: Next place prediction using mobility Markov chains. In: MPM 2012 (2012)
González, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)
Güting, R.H., Schneider, M.: Realm-based spatial data types: the ROSE algebra. VLDB J. 4, 243–286 (2005)
Keikha, M.M., Rahgozar, M., Asadpour, M.: Community aware random walk for network embedding. arXiv preprint arXiv:1710.05199 (2018)
Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2017)
Li, G., Xiong, C., Thabet, A.K., Ghanem, B.: DeeperGCN: all you need to train deeper GCNs. arXiv preprint arXiv:2006.07739 (2020)
Li, L., Li, Y., Li, Z.: Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transp. Res. Part C Emerg. Technol. 34, 108–120 (2013)
Li, X., Zhao, K., Cong, G., Jensen, C.S., Wei, W.: Deep representation learning for trajectory similarity computation. In: ICDE, pp. 617–628 (2018)
Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model with spatial and temporal contexts. In: AAAI (2016)
Moritz, S., Bartz-Beielstein, T.: imputeTS: time series missing value imputation in R. R J. 9, 207 (2017)
Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: KDD (2014)
Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS (2007)
Schneider, C., Belik, V., Couronné, T., Smoreda, Z., González, M.C.: Unravelling daily human mobility motifs. J. R. Soc. Interface 10 (2013)
Su, H., Cong, G., Chen, W., Zheng, B., Zheng, K.: Personalized route description based on historical trajectories. In: CIKM (2019)
Sun, H., Yang, C., Deng, L., Zhou, F., Huang, F., Zheng, K.: Periodicmove: shift-aware human mobility recovery with graph neural network. In: CIKM (2021)
Sun, K., Qian, T., Chen, T., Liang, Y., Nguyen, Q.V.H., Yin, H.: Where to go next: modeling long- and short-term user preferences for point-of-interest recommendation. In: AAAI (2020)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: WWW (2015)
Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2018)
Wang, J., Wu, N., Lu, X., Zhao, W.X., Feng, K.: Deep trajectory recovery with fine-grained calibration using Kalman filter. TKDE 33, 921–934 (2021)
Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. arXiv preprint arXiv:1811.00855 (2019)
Xi, D., Zhuang, F., Liu, Y., Gu, J., Xiong, H., He, Q.: Modelling of bi-directional spatio-temporal dependence and users’ dynamic preferences for missing poi check-in identification. In: AAAI (2019)
Xia, T., et al.: Attnmove: history enhanced trajectory recovery via attentional network. In: AAAI (2021)
Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man Cybern.: Syst. 45, 129–142 (2015)
Zhan, X., Zheng, Y., Yi, X., Ukkusuri, S.V.: Citywide traffic volume estimation using trajectory data. TKDE 29(2), 272–285 (2016)
Zhang, Y., Liu, A., Liu, G., Li, Z., Li, Q.: Deep representation learning of activity trajectory similarity computation. In: ICWS, pp. 312–319 (2019)
Zhao, J., Xu, J., Zhou, R., Zhao, P., Liu, C., Zhu, F.: On prediction of user destination by sub-trajectory understanding: a deep learning based approach. In: CIKM (2018)
Zhao, P., Xu, X., Liu, Y., Sheng, V., Zheng, K., Xiong, H.: Photo2Trip: exploiting visual contents in geo-tagged photos for personalized tour recommendation. In: MM (2017)
Zhao, Y., Shang, S., Wang, Y., Zheng, B., Nguyen, Q.V.H., Zheng, K.: Rest: a reference-based framework for spatio-temporal trajectory compression. In: SIGKDD, pp. 2797–2806 (2018)
Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. TIST 5, 38:1–38:55 (2014)
Zheng, Y., Xie, X., Ma, W.Y.: GeoLife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33, 32–39 (2010)
Acknowledgements
This work is partially supported by NSFC (No. 61972069, 61836007 and 61832017), Shenzhen Municipal Science and Technology R &D Funding Basic Research Program (JCYJ20210324133607021), and Municipal Government of Quzhou under Grant No. 2022D037.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Deng, L., Zhao, Y., Sun, H., Yang, C., Xie, J., Zheng, K. (2023). Fusing Local and Global Mobility Patterns for Trajectory Recovery. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-30637-2_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30636-5
Online ISBN: 978-3-031-30637-2
eBook Packages: Computer ScienceComputer Science (R0)