Abstract
With the introduction of spatial semantics in the knowledge base, semantic place retrieval on spatial RDF data has become a popular research topic in recent years. Most existing methods ignore the following two problems. First, exact matching leads to a large number of potential results being missed and ultimately returning limited results. Second, the Top-k linear ranking function transforms the multi-objective problem into the single-objective optimization, causing the results to be prone to extreme values. In this paper, we propose a new approach named SSPR, which replaces exact matching with fuzzy matching to make retrieval closer to the human experience of interpretation. In addition, inspired by skyline, we computation an efficient query algorithm to select places from both the semantic relevance and spatial distance, returning mutually non-dominated results. The experiments on different test sets demonstrate that our approach compared to the traditional kSP method balances spatial distance and semantic relevance while outperforming retrieval efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shan, X., Qiu, J., Wang, B., Dang, Y., Lu, T., Zheng, Y.: Place retrieval in knowledge graph. In: Scientific Programming (2020)
Shi, J., Wu, D., Mamoulis, N.: Top-\(k\) relevant semantic place retrieval on spatial RDF data. In: Proceedings of the 2016 International Conference on Management of Data, pp. 1977–1990 (2016)
Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword search on large RDF data. IEEE Trans. Knowl. Data Eng. 26(11), 2774–2788 (2014)
Stefanidis, K., Fundulaki, I.: Keyword search on RDF graphs: it is more than just searching for keywords. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 144–148. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25639-9_28
Cai, Z., Kalamatianos, G., Fakas, G.J., Mamoulis, N., Papadias, D.: Diversified spatial keyword search on RDF data. VLDB J. 29(5), 1171–1189 (2020)
Wu, D., Hou, C., Xiao, E., Jensen, C.S.: Semantic region retrieval from spatial RDF data. In: Nah, Y., Cui, B., Lee, S.-W., Yu, J.X., Moon, Y.-S., Whang, S.E. (eds.) DASFAA 2020. LNCS, vol. 12113, pp. 415–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59416-9_25
Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: a spatially and temporally enhanced knowledge base from wikipedia. Artif. Intell. 194, 28–61 (2013)
Jin, X., Shin, S., Jo, E., Lee, K.H.: Collective keyword query on a spatial knowledge base. IEEE Trans. Knowl. Data Eng. 31(11), 2051–2062 (2018)
Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for web scale RDF data. Proceed. VLDB Endow. 6(4), 265–276 (2013)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances In Neural Information Processing Systems 26 (2013)
Wei, L., Lin, Z., Lai, Y.: DTFS: A Top-\(k\) skyline query for large datasets. In: Computer Science, vol. 46, no. 5, pp. 150–156 (2019)
Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semantic web 6(2), 167–195 (2015)
Acknowledgements
The work is supported in part by the National Key R &D Program of China (Grant No. 2021YFB3900601).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lu, J., Zhou, Z., Liu, J., Feng, J. (2023). SSPR: A Skyline-Based Semantic Place Retrieval Method. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-30105-6_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30104-9
Online ISBN: 978-3-031-30105-6
eBook Packages: Computer ScienceComputer Science (R0)