Skip to main content

SSPR: A Skyline-Based Semantic Place Retrieval Method

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

  • 1641 Accesses

Abstract

With the introduction of spatial semantics in the knowledge base, semantic place retrieval on spatial RDF data has become a popular research topic in recent years. Most existing methods ignore the following two problems. First, exact matching leads to a large number of potential results being missed and ultimately returning limited results. Second, the Top-k linear ranking function transforms the multi-objective problem into the single-objective optimization, causing the results to be prone to extreme values. In this paper, we propose a new approach named SSPR, which replaces exact matching with fuzzy matching to make retrieval closer to the human experience of interpretation. In addition, inspired by skyline, we computation an efficient query algorithm to select places from both the semantic relevance and spatial distance, returning mutually non-dominated results. The experiments on different test sets demonstrate that our approach compared to the traditional kSP method balances spatial distance and semantic relevance while outperforming retrieval efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shan, X., Qiu, J., Wang, B., Dang, Y., Lu, T., Zheng, Y.: Place retrieval in knowledge graph. In: Scientific Programming (2020)

    Google Scholar 

  2. Shi, J., Wu, D., Mamoulis, N.: Top-\(k\) relevant semantic place retrieval on spatial RDF data. In: Proceedings of the 2016 International Conference on Management of Data, pp. 1977–1990 (2016)

    Google Scholar 

  3. Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword search on large RDF data. IEEE Trans. Knowl. Data Eng. 26(11), 2774–2788 (2014)

    Article  Google Scholar 

  4. Stefanidis, K., Fundulaki, I.: Keyword search on RDF graphs: it is more than just searching for keywords. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 144–148. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25639-9_28

    Chapter  Google Scholar 

  5. Cai, Z., Kalamatianos, G., Fakas, G.J., Mamoulis, N., Papadias, D.: Diversified spatial keyword search on RDF data. VLDB J. 29(5), 1171–1189 (2020)

    Article  Google Scholar 

  6. Wu, D., Hou, C., Xiao, E., Jensen, C.S.: Semantic region retrieval from spatial RDF data. In: Nah, Y., Cui, B., Lee, S.-W., Yu, J.X., Moon, Y.-S., Whang, S.E. (eds.) DASFAA 2020. LNCS, vol. 12113, pp. 415–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59416-9_25

    Chapter  Google Scholar 

  7. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: a spatially and temporally enhanced knowledge base from wikipedia. Artif. Intell. 194, 28–61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jin, X., Shin, S., Jo, E., Lee, K.H.: Collective keyword query on a spatial knowledge base. IEEE Trans. Knowl. Data Eng. 31(11), 2051–2062 (2018)

    Article  Google Scholar 

  9. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for web scale RDF data. Proceed. VLDB Endow. 6(4), 265–276 (2013)

    Article  Google Scholar 

  10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances In Neural Information Processing Systems 26 (2013)

    Google Scholar 

  11. Wei, L., Lin, Z., Lai, Y.: DTFS: A Top-\(k\) skyline query for large datasets. In: Computer Science, vol. 46, no. 5, pp. 150–156 (2019)

    Google Scholar 

  12. Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semantic web 6(2), 167–195 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported in part by the National Key R &D Program of China (Grant No. 2021YFB3900601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiamin Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, J., Zhou, Z., Liu, J., Feng, J. (2023). SSPR: A Skyline-Based Semantic Place Retrieval Method. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics