Skip to main content

Spatial Graph Convolution Neural Networks for Water Distribution Systems

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXI (IDA 2023)

Abstract

We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, hence graph neural networks face the challenge of long term dependencies. We propose a specific architecture based on message passing which displays excellent results for a number of benchmark tasks in the WDS domain. Further, we investigate a multi-hop variation, which requires considerably less resources and opens an avenue towards big WDS graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/HammerLabML/GCNs_for_WDS.

  2. 2.

    https://engineering.exeter.ac.uk/research/cws/resources/benchmarks/#a8.

  3. 3.

    https://www.batadal.net/data.html.

References

  1. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning on large graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 624–638. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27819-1_43

    Chapter  MATH  Google Scholar 

  2. Bruna, J., Zaremba, W., Szlam, A.D., LeCun, Y.: Spectral networks and locally connected networks on graphs. CoRR (2014)

    Google Scholar 

  3. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS, vol. 29, pp. 3844–3852 (2016)

    Google Scholar 

  4. Dick, K., Russell, L., Dosso, Y.S., Kwamena, F., Green, J.R.: Deep learning for critical infrastructure resilience. JIS 25(2), 05019003 (2019)

    Google Scholar 

  5. Eichenberger, C., et al.: Traffic4cast at NeurIPS 2021 - temporal and spatial few-shot transfer learning in gridded geo-spatial processes. In: Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track, vol. 176, pp. 97–112. PMLR (2022)

    Google Scholar 

  6. EurEau: Europe’s water in figures (2021)

    Google Scholar 

  7. Gao, H., Wang, Z., Ji, S.: Large-scale learnable graph convolutional networks. In: SIGKDD, pp. 1416–1424 (2018)

    Google Scholar 

  8. Hajgató, G., Gyires-Tóth, B., Paál, G.: Reconstructing nodal pressures in water distribution systems with graph neural networks (2021). https://doi.org/10.48550/ARXIV.2104.13619

  9. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS, pp. 1025–1035 (2017)

    Google Scholar 

  10. Hammer, B.: Learning with Recurrent Neural Networks. Leacture Notes in Control and Information Sciences, vol. 254. Springer, London (2000). https://doi.org/10.1007/BFb0110016

    Book  MATH  Google Scholar 

  11. Hammer, B., Micheli, A., Sperduti, A.: Universal approximation capability of cascade correlation for structures. Neural Comput. 17(5), 1109–1159 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015)

  13. Kammoun, M., Kammoun, A., Abid, M.: Leak detection methods in water distribution networks: a comparative survey on artificial intelligence applications. J. Pipeline Syst. Eng. Pract. 13(3), 04022024 (2022)

    Article  Google Scholar 

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  15. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: NIPS 2017, pp. 972–981 (2017)

    Google Scholar 

  16. Klise, K.A., Murray, R., Haxton, T.: An overview of the water network tool for resilience (WNTR) (2018)

    Google Scholar 

  17. Klise, K.A., Phillips, C.A., Janke, R.J.: Two-tiered sensor placement for large water distribution network models. JIS 19(4), 465–473 (2013)

    Google Scholar 

  18. Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: CayleyNets: graph convolutional neural networks with complex rational spectral filters. IEEE Trans. Signal Process. 67(1), 97–109 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, G., Xiong, C., Thabet, A., Ghanem, B.: DeeperGCN: All you need to train deeper GCNs (2020)

    Google Scholar 

  20. Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  21. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting (2017). https://arxiv.org/abs/1707.01926

  22. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–5124 (2017)

    Google Scholar 

  23. Nandanoori, S.P., et al.: Graph neural network and Koopman models for learning networked dynamics: a comparative study on power grid transients prediction (2022)

    Google Scholar 

  24. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: ICML, pp. 2014–2023. PMLR (2016)

    Google Scholar 

  25. Omitaomu, O.A., Niu, H.: Artificial intelligence techniques in smart grid: a survey. Smart Cities 4(2), 548–568 (2021)

    Article  Google Scholar 

  26. Rossman, L., Woo, H., Tryby, M., Shang, F., Janke, R., Haxton, T.: EPANET 2.2 user’s manual, water infrastructure division. CESER (2020)

    Google Scholar 

  27. Sato, R.: A survey on the expressive power of graph neural networks. CoRR (2020). https://arxiv.org/abs/2003.04078

  28. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  29. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph Attention Networks. ICLR (2018)

    Google Scholar 

  30. Vrachimis, S.G., et al.: BattLeDIM: battle of the leakage detection and isolation methods. In: CCWI/WDSA Joint Conference (2020)

    Google Scholar 

  31. Xing, L., Sela, L.: Graph neural networks for state estimation in water distribution systems: application of supervised and semisupervised learning. J. Water Resour. Plann. Manage. 148(5), 04022018 (2022)

    Article  Google Scholar 

  32. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

Download references

Acknowledgements

We gratefully acknowledge funding from the European Research Council (ERC) under the ERC Synergy Grant Water-Futures (Grant agreement No. 951424). This research was also supported by the research training group “Dataninja” (Trustworthy AI for Seamless Problem Solving: Next Generation Intelligence Joins Robust Data Analysis) funded by the German federal state of North Rhine-Westphalia, and by funding from the VW-Foundation for the project IMPACT funded in the frame of the funding line AI and its Implications for Future Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inaam Ashraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashraf, I., Hermes, L., Artelt, A., Hammer, B. (2023). Spatial Graph Convolution Neural Networks for Water Distribution Systems. In: Crémilleux, B., Hess, S., Nijssen, S. (eds) Advances in Intelligent Data Analysis XXI. IDA 2023. Lecture Notes in Computer Science, vol 13876. Springer, Cham. https://doi.org/10.1007/978-3-031-30047-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30047-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30046-2

  • Online ISBN: 978-3-031-30047-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics