Abstract
Few-shot learning is increasingly popular in image classification. The key is to learn the significant features from source classes to match the support and query pairs. In this paper, we redesign the contrastive learning scheme in a few-shot manner with selected proposal boxes generated by Navigator network. The main work of this paper includes: (i) We analyze the limitation of hard sample generating proposed by current few-shot learning methods with contrastive learning and find additional noise introduced in contrastive loss construction. (ii) We propose a novel embedding model with contrastive learning named infoPB which improves hard samples with proposal boxes to improve Noise Contrastive Estimation. (iii) We demonstrate infoPB is effective in few-shot image classification and benefited from Navigator network through the ablation study. (iv) The performance of our method is evaluated thoroughly on typical few-shot image classification tasks. It verifies a new state-of-the-art performance compared with outstanding competitors with their best results on miniImageNet in 5-way, 5-shot, and tieredImageNet in 5-way, 1-shot/5-way, 5-shot.
This work was supported by Support Scheme of Guangzhou for Leading Talents in Innovation and Entrepreneurship (No: 2020010).
F. Gong and Y. Xie—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afrasiyabi, A., Lalonde, J.-F., Gagné, C.: Associative alignment for few-shot image classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 18–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_2
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, Physica-Verlag HD, pp. 177–186. Springer, Cham (2010). https://doi.org/10.1007/978-3-7908-2604-3_16
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029 (2020)
Chen, W., Si, C., Wang, W., Wang, L., Wang, Z., Tan, T.: Few-shot learning with part discovery and augmentation from unlabeled images. arXiv preprint arXiv:2105.11874 (2021)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
Chen, Y., Wang, X., Liu, Z., Xu, H., Darrell, T.: A new meta-baseline for few-shot learning. arXiv preprint arXiv:2003.04390 (2020)
Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-shot image classification. In: International Conference on Learning Representations (2019)
Fei, N., Lu, Z., Gao, Y., Tian, J., Xiang, T., Wen, J.R.: Meta-learning across meta-tasks for few-shot learning. arXiv preprint arXiv:2002.04274 (2020)
Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot visual learning with self-supervision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8059–8068 (2019)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hou, R., Chang, H., Ma, B., Shan, S., Chen, X.: Cross attention network for few-shot classification. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10657–10665 (2019)
Li, H., Eigen, D., Dodge, S., Zeiler, M., Wang, X.: Finding task-relevant features for few-shot learning by category traversal. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1–10 (2019)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Liu, C., et al.: Learning a few-shot embedding model with contrastive learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8635–8643 (2021)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Luo, Q., Wang, L., Lv, J., Xiang, S., Pan, C.: Few-shot learning via feature hallucination with variational inference. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3963–3972 (2021)
Ma, J., Xie, H., Han, G., Chang, S.F., Galstyan, A., Abd-Almageed, W.: Partner-assisted learning for few-shot image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10573–10582, October 2021
Mangla, P., Kumari, N., Sinha, A., Singh, M., Krishnamurthy, B., Balasubramanian, V.N.: Charting the right manifold: manifold mixup for few-shot learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2218–2227 (2020)
Oord, A.V.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Oreshkin, B.N., Rodriguez, P., Lacoste, A.: Tadam: task dependent adaptive metric for improved few-shot learning. arXiv preprint arXiv:1805.10123 (2018)
Qiao, L., Shi, Y., Li, J., Wang, Y., Huang, T., Tian, Y.: Transductive episodic-wise adaptive metric for few-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3603–3612 (2019)
Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)
Rusu, A.A., et al.: Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960 (2018)
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 4080–4090 (2017)
Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 266–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_16
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. Adv. Neural Inf. Process. Syst. 29, 3630–3638 (2016)
Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. (CSUR) 53(3), 1–34 (2020)
Yang, F.S.Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: CVPR, vol. 1, p. 6 (2018)
Yang, L., Li, L., Zhang, Z., Zhou, X., Zhou, E., Liu, Y.: Dpgn: distribution propagation graph network for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13390–13399 (2020)
Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: few-shot image classification with differentiable earth mover’s distance and structured classifiers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12203–12213 (2020)
Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gong, F. et al. (2023). A Proposal-Improved Few-Shot Embedding Model with Contrastive Learning. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-27818-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27817-4
Online ISBN: 978-3-031-27818-1
eBook Packages: Computer ScienceComputer Science (R0)