Abstract
Spatio-temporal joins are important operations in spatio-temporal databases. The rapid increase in the amount of spatio-temporal objects makes the cost of spatio-temporal joins expensive and requires an efficient method for spatio-temporal joins. In this paper, we propose a block-join method for spatio-temporal joins by partitioned blocks. We first partition the entire spatio-temporal data space of two trajectory datasets into equal-sized blocks. Spatio-temporal objects with similar spatio-temporal attributes will be split into the same block. To achieve a uniform distribution of trajectories inside a block called block trajectories, we merge two blocks into one block called unequal-sized blocks. Then, we evaluate block trajectories in the same and adjacent blocks to get pairs satisfying the spatio-temporal join conditions. The pairs are sorted and removed duplicated pairs to get precise results. Using both real and synthetic datasets, we carry out comprehensive experiments in a prototype database system to evaluate the efficiency of our methods. The experimental results show that our approach outperforms alternative methods in the system by a factor of 2-10x on large datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
Bakalov, P., Hadjieleftheriou, M., Tsotras, V.J.: Time relaxed spatiotemporal trajectory joins. In: Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems, pp. 182–191 (2005)
Chen, H., Du, J., Zhang, W., Li, B.: An iterative end point fitting based trend segmentation representation of time series and its distance measure. Multimedia Tools Appl. 13481–13499 (2020). https://doi.org/10.1007/s11042-019-08440-0
Dai, T., Li, B., Yu, Z., Tong, X., Chen, M., Chen, G.: PARP: a parallel traffic condition driven route planning model on dynamic road networks. ACM Trans. Intell. Syst. Technol. (TIST) 12(6), 1–24 (2021)
Dan, T., Luo, C., Li, Y., Zheng, B., Li, G.: Spatial temporal trajectory similarity join. In: Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data, pp. 251–259 (2019)
Dignös, A., Böhlen, M.H., Gamper, J.: Overlap interval partition join. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 1459–1470 (2014)
Güting, R.H., Behr, T., Düntgen, C.: SECONDO: a platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng. Bull. 33(2), 56–63 (2010)
Güting, R.H., et al.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. (TODS) 25(1), 1–42 (2000)
Hayashi, H., Asahara, A., Sugaya, N., Ogawa, Y., Tomita, H.: Spatio-temporal join technique for disaster estimation in large-scale natural disaster. In: Proceedings of the 6th ACM SIGSPATIAL, pp. 49–58 (2015)
Koudas, N., Sevcik, K.C.: Size separation spatial join. In: Proceedings of the 1997 ACM SIGMOD, pp. 324–335 (1997)
Li, R., et al.: Distributed spatio-temporal k nearest neighbors join. In: Proceedings of the 29th International Conference on Advances in Geographic Information Systems, pp. 435–445 (2021)
Lo, M.L., Ravishankar, C.V.: Spatial hash-joins. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, pp. 247–258 (1996)
Lu, H., Yang, B., Jensen, C.S.: Spatio-temporal joins on symbolic indoor tracking data. In: 2011 IEEE 27th International Conference on Data Engineering, pp. 816–827 (2011)
Mishra, P., Eich, M.H.: Join processing in relational databases. ACM Comput. Surv. (CSUR) 24(1), 63–113 (1992)
Nobari, S., Qu, Q., Jensen, C.S.: In-memory spatial join: the data matters! In: 20th International Conference on Extending Database Technology: EDBT/ICDT 2017 Joint Conference (2017)
Nobari, S., Tauheed, F., Heinis, T., Karras, P., Bressan, S., Ailamaki, A.: Touch: in-memory spatial join by hierarchical data-oriented partitioning. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 701–712 (2013)
Patel, J.M., DeWitt, D.J.: Partition based spatial-merge join. ACM SIGMOD Rec. 25(2), 259–270 (1996)
Preparata, F.P., Shamos, M.I.: Computational geometry: an introduction (2012)
Raigoza, J., Sun, J.: Temporal join processing with hilbert curve space mapping. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp. 839–844 (2014)
Sun, J., Tao, Y., Papadias, D., Kollios, G.: Spatio-temporal join selectivity. Inf. Syst. 31(8), 793–813 (2006)
Ulm, G., Smith, S., Nilsson, A., Gustavsson, E., Jirstrand, M.: OODIDA: on-board/off-board distributed real-time data analytics for connected vehicles. Data Sci. Eng. 6(1), 102–117 (2021)
Acknowledgements
This work is supported by National Natural Science Foundation of China (61972198), Natural Science Foundation of Jiangsu Province of China (BK20191273).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, T., Xu, J. (2023). Block-Join: A Partition-Based Method for Processing Spatio-Temporal Joins. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13423. Springer, Cham. https://doi.org/10.1007/978-3-031-25201-3_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-25201-3_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25200-6
Online ISBN: 978-3-031-25201-3
eBook Packages: Computer ScienceComputer Science (R0)