Abstract
Finding a small subset representing a large dataset is an important functionality in many real applications such as data mining, recommendation and web search. The average happiness maximization set problem also known as the average regret minimization set problem was recently proposed to fulfill this task and it can additionally satisfy users on average with the representative subset. In this paper, we study the online average happiness maximization set (Online-AHMS) problem over data streams where each data point should be decided to be accepted or discarded when it arrives, and the discarded data points will never be considered. We provide an efficient online algorithm named GreedyAT with theoretical guarantees for the Online-AHMS problem which greedily selects data points based on the adaptive thresholds strategy. Experimental results on the synthetic and real datasets demonstrate the efficiency and effectiveness of our GreedyAT algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Efficient algorithms for \({k}\)-regret minimizing sets. In: SEA, pp. 7:1–7:23 (2017)
Alami, K., Maabout, S.: A framework for multidimensional skyline queries over streaming data. Data Knowl. Eng. 127, 101792 (2020)
Asudeh, A., Nazi, A., Zhang, N., Das, G.: Efficient computation of regret-ratio minimizing set: a compact maxima representative. In: SIGMOD, pp. 821–834 (2017)
Asudeh, A., Nazi, A., Zhang, N., Das, G., Jagadish, H.V.: RRR: rank-regret representative. In: SIGMOD, pp. 263–280 (2019)
Börzsöny, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421–430 (2001)
Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with preemption. ACM Trans. Algorithms. 15(3), 30:1–30:31 (2019)
Cao, W., et al.: \({k}\)-regret minimizing set: Efficient algorithms and hardness. In: ICDT, pp. 11:1–11:19 (2017)
Chakrabarti, A., Kale, S.: Submodular maximization meets streaming: matchings, matroids, and more. Math. Program. 154(1–2), 225–247 (2015)
Chan, T.H.H., Huang, Z., Jiang, S.H.C., Kang, N., Tang, Z.G.: Online submodular maximization with free disposal. ACM Trans. Algorithms. 14(4), 56:1–56:29 (2018)
Chester, S., Thomo, A., Venkatesh, S., Whitesides, S.: Computing \({k}\)-regret minimizing sets. In: VLDB, pp. 389–400 (2014)
Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. SIGMOD Rec. 42(3), 6–18 (2013)
Chu, W., Ghahramani, Z.: Preference learning with gaussian processes. In: ICML, pp. 137–144 (2005)
Faulkner, T.K., Brackenbury, W., Lall, A.: \({k}\)-regret queries with nonlinear utilities. In: VLDB, pp. 2098–2109 (2015)
Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. (SICOMP) 40(4), 1133–1153 (2011)
Gomes, R., Krause, A.: Budgeted nonparametric learning from data streams. In: ICML, pp. 391–398 (2010)
Houlsby, N., Huszar, F., Z. Ghahramani, Z., Hernández-lobato, J.: Collaborative gaussian processes for preference learning. In: NIPS, pp. 2096–2104 (2012)
Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-\({k}\) query processing techniques in relational database systems. CSUR. 40(4), 11:1–11:58 (2008)
Li, Y., et al.: Hyperbolic hypergraphs for sequential recommendation. In: CIKM, pp. 988–997 (2021)
Luenam, P., Chen, Y.P., Wong, R.C.: Approximating happiness maximizing set problems. CoRR abs/2102.03578, pp. 1–13 (2021)
Ma, W., Zheng, J., Hao, Z.: A coreset based approach for continuous \({k}\)-regret minimization set queries over sliding windows. In: WISA, pp. 49–61 (2021)
Nanongkai, D., Sarma, A., Lall, A., Lipton, R., Xu, J.: Regret-minimizing representative databases. In: VLDB, pp. 1114–1124 (2010)
Nanongkai, D., Lall, A., Das Sarma, A., Makino, K.: Interactive regret minimization. In: SIGMOD, pp. 109–120 (2012)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Program. 14(1), 265–294 (1978)
Peng, P., Wong, R.C.W.: Geometry approach for \({k}\)-regret query. In: ICDE, pp. 772–783 (2014)
Qi, J., Zuo, F., Samet, H., Yao, J.C.: \({k}\)-regret queries using multiplicative utility functions. TODS. 43(2), 10:1–10:41 (2018)
Qiu, X., Zheng, J., Dong, Q., Huang, X.: Speed-up algorithms for happiness-maximizing representative databases. In: APWebWAIM DS Workshop, pp. 321–335 (2018)
Qu, M., Ren, X., Han, J.: Automatic synonym discovery with knowledge bases. In: KDD, pp. 997–1005 (2017)
Storandt, S., Funke, S.: Algorithms for average regret minimization. In: AAAI, pp. 1600–1607 (2019)
Stoyanovich, J., Yang, K., Jagadish, H.: Online set selection with fairness and diversity constraints. In: EDBT, pp. 241–252 (2018)
Wang, Y., Li, Y., Tan, K.: Efficient representative subset selection over sliding windows. TKDE 31(7), 1327–1340 (2019)
Wang, Y., Mathioudakis, M., Li, Y., Tan, K.: Minimum coresets for maxima representation of multidimensional data. In: PODS, pp. 138–152 (2021)
Wang, Y., Li, Y., Wong, R.C.W., Tan, K.L.: A fully dynamic algorithm for \({k}\)-regret minimizing sets. In: ICDE, pp. 1631–1642 (2021)
Xiao, X., Li, J.: Rank-regret minimization. CoRR abs/2111.08563, pp. 1–15 (2021)
Xie, M., Wong, R.C.W., Lall, A.: Strongly truthful interactive regret minimization. In: SIGMOD, pp. 281–298 (2019)
Xie, M., Wong, R.C.W., Lall, A.: An experimental survey of regret minimization query and variants: bridging the best worlds between top-\({k}\) query and skyline query. VLDB J. 29, 147–175 (2020)
Xie, M., Wong, R.C.W., Li, J., Long, C., Lall, A.: Efficient \({k}\)-regret query algorithm with restriction-free bound for any dimensionality. In: SIGMOD, pp. 959–974 (2018)
Xie, M., Wong, R.C.W., Peng, P., Tsotras, V.J.: Being happy with the least: achieving \(\alpha \)-happiness with minimum number of tuples. In: ICDE, pp. 1009–1020 (2020)
Zeighami, S., Wong, R.C.W.: Minimizing average regret ratio in database. In: SIGMOD, pp. 2265–2266 (2016)
Zeighami, S., Wong, R.C.: Finding average regret ratio minimizing set in database. CoRR abs/1810.08047, pp. 1–18 (2018)
Zheng, J., Chen, C.: Sorting-based interactive regret minimization. In: APWeb-WAIM, pp. 473–490 (2020)
Zheng, J., Dong, Q., Wang, X., Zhang, Y., Ma, W., Ma, Y.: Efficient processing of \({k}\)-regret minimization queries with theoretical guarantees. Inf. Sci. 586, 99–118 (2022)
Zheng, J., Wang, Y., Wang, X., Ma, W.: Continuous k-regret minimization queries: a dynamic coreset approach. TKDE (2022). https://doi.org/10.1109/TKDE.2022.3166835
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hao, Z., Zheng, J. (2023). Computing Online Average Happiness Maximization Sets over Data Streams. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13423. Springer, Cham. https://doi.org/10.1007/978-3-031-25201-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-25201-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25200-6
Online ISBN: 978-3-031-25201-3
eBook Packages: Computer ScienceComputer Science (R0)