Skip to main content

More Sustainable Text Classification via Uncertainty Sampling and a Human-in-the-Loop

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13786))

Included in the following conference series:

  • 305 Accesses

Abstract

Text classification by large deep learning networks achieves high accuracy, but uses a lot of computing power and requires high resource investment. In the age of climate change, sustainable solutions are sought that can attain acceptable accuracy with less resource investment. In this paper, we investigate lightweight text classifiers and combine them with a human-in-the-loop approach. Our solution identifies instances that are uncertain to classify and assigns them preferentially to a human domain expert. Experiments performed with nine classifiers on six datasets show that with manually labelling less than 30%, an F1-score between \(\sim \)95% and 99% is achievable for five of six datasets. The inference on energy-efficient GPU-less infrastructure with only 4 GB can be done in less than 1 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://scikit-learn.org/stable/index.html.

  2. 2.

    https://www.tensorflow.org/.

  3. 3.

    https://huggingface.co/bert-base-uncased.

  4. 4.

    https://huggingface.co/sentence-transformers/all-mpnet-base-v2.

References

  1. Al-Jarrah, O.Y., Yoo, P.D., Muhaidat, S., Karagiannidis, G.K., Taha, K.: Efficient machine learning for big data: a review. Big Data Res. 2(3), 87–93 (2015)

    Article  Google Scholar 

  2. Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the people: the role of humans in interactive machine learning. AI Mag. 35(4), 105–120 (2014)

    Google Scholar 

  3. Andersen, J.S., Maalej, W.: Efficient, uncertainty-based moderation of neural networks text classifiers. In: Findings of the Association for Computational Linguistics: ACL 2022, pp. 1536–1546 (2022)

    Google Scholar 

  4. Andersen, J.S., Zukunft, O.: Towards more reliable text classification on edge devices via a human-in-the-loop. In: 2022 International Conference on Agents and Artificial Intelligence, vol. 2, pp. 636–646. SciTePress (2022)

    Google Scholar 

  5. Arnt, A., Zilberstein, S.: Learning to perform moderation in online forums. In: Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003), pp. 637–641. IEEE (2003)

    Google Scholar 

  6. Baram, Y., Yaniv, R.E., Luz, K.: Online choice of active learning algorithms. J. Mach. Learn. Res. 5(Mar), 255–291 (2004)

    Google Scholar 

  7. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, NewYork (2006)

    MATH  Google Scholar 

  8. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: International Conference on Machine Learning, pp. 1613–1622. PMLR (2015)

    Google Scholar 

  9. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78(1), 1–3 (1950)

    Article  Google Scholar 

  10. Corazza, M., Menini, S., Cabrio, E., Tonelli, S., Villata, S.: A multilingual evaluation for online hate speech detection. ACM Trans. Internet Technol. (TOIT) 20(2), 1–22 (2020)

    Article  Google Scholar 

  11. Cortes, C., DeSalvo, G., Mohri, M.: Learning with rejection. In: Ortner, R., Simon, H.U., Zilles, S. (eds.) ALT 2016. LNCS (LNAI), vol. 9925, pp. 67–82. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46379-7_5

    Chapter  MATH  Google Scholar 

  12. Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection and the problem of offensive language. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 11 (2017)

    Google Scholar 

  13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  14. Dudley, J.J., Kristensson, P.O.: A review of user interface design for interactive machine learning. ACM Trans. Interact. Intell. Syst. (TiiS) 8(2), 1–37 (2018)

    Article  Google Scholar 

  15. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  16. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 4885–4894 (2017)

    Google Scholar 

  17. Green, B., Chen, Y.: Disparate interactions: an algorithm-in-the-loop analysis of fairness in risk assessments. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 90–99 (2019)

    Google Scholar 

  18. Haering, M., et al.: Forum 4.0: an open-source user comment analysis framework. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pp. 63–70 (2021)

    Google Scholar 

  19. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  20. He, J., et al.: Towards more accurate uncertainty estimation in text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8362–8372 (2020)

    Google Scholar 

  21. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

  22. Hernández-Lobato, J.M., Adams, R.: Probabilistic backpropagation for scalable learning of Bayesian neural networks. In: International Conference on Machine Learning, pp. 1861–1869. PMLR (2015)

    Google Scholar 

  23. Hingmire, S., Chougule, S., Palshikar, G.K., Chakraborti, S.: Document classification by topic labeling. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 877–880 (2013)

    Google Scholar 

  24. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016). https://doi.org/10.1007/s40708-016-0042-6

    Article  Google Scholar 

  25. Kallis, R., Di Sorbo, A., Canfora, G., Panichella, S.: Ticket tagger: machine learning driven issue classification. In: 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 406–409. IEEE (2019)

    Google Scholar 

  26. Karmakharm, T., Aletras, N., Bontcheva, K.: Journalist-in-the-loop: continuous learning as a service for rumour analysis. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations, pp. 115–120 (2019)

    Google Scholar 

  27. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 5580–5590 (2017)

    Google Scholar 

  28. Lai, C.C., Tsai, M.C.: An empirical performance comparison of machine learning methods for spam e-mail categorization. In: Fourth International Conference on Hybrid Intelligent Systems (HIS 2004), pp. 44–48. IEEE (2004)

    Google Scholar 

  29. Lang, K.: NewsWeeder: learning to filter netnews. In: Machine Learning Proceedings 1995, pp. 331–339. Elsevier (1995)

    Google Scholar 

  30. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  31. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 3–12. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_1

    Chapter  Google Scholar 

  32. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5(Apr), 361–397 (2004)

    Google Scholar 

  33. Li, X., Roth, D.: Learning question classifiers. In: COLING 2002: The 19th International Conference on Computational Linguistics (2002)

    Google Scholar 

  34. Liu, Z., Chen, H.: A predictive performance comparison of machine learning models for judicial cases. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE (2017)

    Google Scholar 

  35. Maalej, W., Kurtanović, Z., Nabil, H., Stanik, C.: On the automatic classification of app reviews. Requirements Eng. 21(3), 311–331 (2016). https://doi.org/10.1007/s00766-016-0251-9

    Article  Google Scholar 

  36. Maas, A., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150 (2011)

    Google Scholar 

  37. Pavlopoulos, J., Malakasiotis, P., Androutsopoulos, I.: Deep learning for user comment moderation. In: Proceedings of the First Workshop on Abusive Language Online, pp. 25–35 (2017)

    Google Scholar 

  38. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)

    Google Scholar 

  39. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  40. Rattigan, M.J., Maier, M., Jensen, D.: Exploiting network structure for active inference in collective classification. In: Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007), pp. 429–434. IEEE (2007)

    Google Scholar 

  41. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2019)

    Google Scholar 

  42. Sacha, D., Senaratne, H., Kwon, B.C., Ellis, G., Keim, D.A.: The role of uncertainty, awareness, and trust in visual analytics. IEEE Trans. Visual Comput. Graphics 22(1), 240–249 (2015)

    Article  Google Scholar 

  43. Sachan, D.S., Zaheer, M., Salakhutdinov, R.: Revisiting LSTM networks for semi-supervised text classification via mixed objective function. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6940–6948 (2019)

    Google Scholar 

  44. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

  45. Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. Commun. ACM 63(12), 54–63 (2020)

    Article  Google Scholar 

  46. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  Google Scholar 

  47. Siddhant, A., Lipton, Z.C.: Deep Bayesian active learning for natural language processing: results of a large-scale empirical study. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2904–2909 (2018)

    Google Scholar 

  48. Stanik, C., Haering, M., Maalej, W.: Classifying multilingual user feedback using traditional machine learning and deep learning. In: 27th International Requirements Engineering Conference Workshops (REW), pp. 220–226. IEEE (2019)

    Google Scholar 

  49. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3645–3650 (2019)

    Google Scholar 

  50. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  51. Zanzotto, F.M.: Human-in-the-loop artificial intelligence. J. Artif. Intell. Res. 64, 243–252 (2019)

    Article  Google Scholar 

  52. Zhang, Q., Yang, L.T., Chen, Z., Li, P.: A survey on deep learning for big data. Inf. Fusion 42, 146–157 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Smedegaard Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andersen, J.S., Zukunft, O. (2022). More Sustainable Text Classification via Uncertainty Sampling and a Human-in-the-Loop. In: Rocha, A.P., Steels, L., van den Herik, J. (eds) Agents and Artificial Intelligence. ICAART 2022. Lecture Notes in Computer Science(), vol 13786. Springer, Cham. https://doi.org/10.1007/978-3-031-22953-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22953-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22952-7

  • Online ISBN: 978-3-031-22953-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics