Abstract
Text classification by large deep learning networks achieves high accuracy, but uses a lot of computing power and requires high resource investment. In the age of climate change, sustainable solutions are sought that can attain acceptable accuracy with less resource investment. In this paper, we investigate lightweight text classifiers and combine them with a human-in-the-loop approach. Our solution identifies instances that are uncertain to classify and assigns them preferentially to a human domain expert. Experiments performed with nine classifiers on six datasets show that with manually labelling less than 30%, an F1-score between \(\sim \)95% and 99% is achievable for five of six datasets. The inference on energy-efficient GPU-less infrastructure with only 4 GB can be done in less than 1 s.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Jarrah, O.Y., Yoo, P.D., Muhaidat, S., Karagiannidis, G.K., Taha, K.: Efficient machine learning for big data: a review. Big Data Res. 2(3), 87–93 (2015)
Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the people: the role of humans in interactive machine learning. AI Mag. 35(4), 105–120 (2014)
Andersen, J.S., Maalej, W.: Efficient, uncertainty-based moderation of neural networks text classifiers. In: Findings of the Association for Computational Linguistics: ACL 2022, pp. 1536–1546 (2022)
Andersen, J.S., Zukunft, O.: Towards more reliable text classification on edge devices via a human-in-the-loop. In: 2022 International Conference on Agents and Artificial Intelligence, vol. 2, pp. 636–646. SciTePress (2022)
Arnt, A., Zilberstein, S.: Learning to perform moderation in online forums. In: Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003), pp. 637–641. IEEE (2003)
Baram, Y., Yaniv, R.E., Luz, K.: Online choice of active learning algorithms. J. Mach. Learn. Res. 5(Mar), 255–291 (2004)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, NewYork (2006)
Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: International Conference on Machine Learning, pp. 1613–1622. PMLR (2015)
Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78(1), 1–3 (1950)
Corazza, M., Menini, S., Cabrio, E., Tonelli, S., Villata, S.: A multilingual evaluation for online hate speech detection. ACM Trans. Internet Technol. (TOIT) 20(2), 1–22 (2020)
Cortes, C., DeSalvo, G., Mohri, M.: Learning with rejection. In: Ortner, R., Simon, H.U., Zilles, S. (eds.) ALT 2016. LNCS (LNAI), vol. 9925, pp. 67–82. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46379-7_5
Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection and the problem of offensive language. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 11 (2017)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Dudley, J.J., Kristensson, P.O.: A review of user interface design for interactive machine learning. ACM Trans. Interact. Intell. Syst. (TiiS) 8(2), 1–37 (2018)
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)
Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 4885–4894 (2017)
Green, B., Chen, Y.: Disparate interactions: an algorithm-in-the-loop analysis of fairness in risk assessments. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 90–99 (2019)
Haering, M., et al.: Forum 4.0: an open-source user comment analysis framework. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pp. 63–70 (2021)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-84858-7
He, J., et al.: Towards more accurate uncertainty estimation in text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8362–8372 (2020)
Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)
Hernández-Lobato, J.M., Adams, R.: Probabilistic backpropagation for scalable learning of Bayesian neural networks. In: International Conference on Machine Learning, pp. 1861–1869. PMLR (2015)
Hingmire, S., Chougule, S., Palshikar, G.K., Chakraborti, S.: Document classification by topic labeling. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 877–880 (2013)
Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016). https://doi.org/10.1007/s40708-016-0042-6
Kallis, R., Di Sorbo, A., Canfora, G., Panichella, S.: Ticket tagger: machine learning driven issue classification. In: 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 406–409. IEEE (2019)
Karmakharm, T., Aletras, N., Bontcheva, K.: Journalist-in-the-loop: continuous learning as a service for rumour analysis. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations, pp. 115–120 (2019)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 5580–5590 (2017)
Lai, C.C., Tsai, M.C.: An empirical performance comparison of machine learning methods for spam e-mail categorization. In: Fourth International Conference on Hybrid Intelligent Systems (HIS 2004), pp. 44–48. IEEE (2004)
Lang, K.: NewsWeeder: learning to filter netnews. In: Machine Learning Proceedings 1995, pp. 331–339. Elsevier (1995)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 3–12. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_1
Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5(Apr), 361–397 (2004)
Li, X., Roth, D.: Learning question classifiers. In: COLING 2002: The 19th International Conference on Computational Linguistics (2002)
Liu, Z., Chen, H.: A predictive performance comparison of machine learning models for judicial cases. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE (2017)
Maalej, W., Kurtanović, Z., Nabil, H., Stanik, C.: On the automatic classification of app reviews. Requirements Eng. 21(3), 311–331 (2016). https://doi.org/10.1007/s00766-016-0251-9
Maas, A., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150 (2011)
Pavlopoulos, J., Malakasiotis, P., Androutsopoulos, I.: Deep learning for user comment moderation. In: Proceedings of the First Workshop on Abusive Language Online, pp. 25–35 (2017)
Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Rattigan, M.J., Maier, M., Jensen, D.: Exploiting network structure for active inference in collective classification. In: Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007), pp. 429–434. IEEE (2007)
Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2019)
Sacha, D., Senaratne, H., Kwon, B.C., Ellis, G., Keim, D.A.: The role of uncertainty, awareness, and trust in visual analytics. IEEE Trans. Visual Comput. Graphics 22(1), 240–249 (2015)
Sachan, D.S., Zaheer, M., Salakhutdinov, R.: Revisiting LSTM networks for semi-supervised text classification via mixed objective function. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6940–6948 (2019)
Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)
Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. Commun. ACM 63(12), 54–63 (2020)
Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)
Siddhant, A., Lipton, Z.C.: Deep Bayesian active learning for natural language processing: results of a large-scale empirical study. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2904–2909 (2018)
Stanik, C., Haering, M., Maalej, W.: Classifying multilingual user feedback using traditional machine learning and deep learning. In: 27th International Requirements Engineering Conference Workshops (REW), pp. 220–226. IEEE (2019)
Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3645–3650 (2019)
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 32 (2019)
Zanzotto, F.M.: Human-in-the-loop artificial intelligence. J. Artif. Intell. Res. 64, 243–252 (2019)
Zhang, Q., Yang, L.T., Chen, Z., Li, P.: A survey on deep learning for big data. Inf. Fusion 42, 146–157 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Andersen, J.S., Zukunft, O. (2022). More Sustainable Text Classification via Uncertainty Sampling and a Human-in-the-Loop. In: Rocha, A.P., Steels, L., van den Herik, J. (eds) Agents and Artificial Intelligence. ICAART 2022. Lecture Notes in Computer Science(), vol 13786. Springer, Cham. https://doi.org/10.1007/978-3-031-22953-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-22953-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22952-7
Online ISBN: 978-3-031-22953-4
eBook Packages: Computer ScienceComputer Science (R0)