Abstract
Automatic persona generation has been shown to have specific measurable benefits for application creators and users. In most situations, personas are adequately descriptive and diversified to achieve user type accuracy and coverage. For specific market segments, such as online gaming, using personas may accurately describe existing user base but not changing habit and need that are introduced by the fluidity of the offerings and the delivery methods. Changes in the ways that applications are marketed, such as new payment methods, for example, subscription models, pay-to-play and pay-to-win, payment-driven-gamification, seriously affect user needs and result in direct impact on user acceptance. This work utilises structured user needs from online gaming players to augment personas using personalisation techniques. The personas are finetuned and de-diversified to result in concise personas, based on user needs that successfully convey information for creators and users alike.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jansen, B.J., Salminen, J.O., Jung, S.-G.: Data-driven personas for enhanced user understanding: combining empathy with rationality for better insights to analytics. Data Inf. Manage. 4, 1–17 (2020). https://doi.org/10.2478/dim-2020-0005
Xu, Y., Lee, M.J.: Identifying personas in online shopping communities. MTI. 4, 19 (2020). https://doi.org/10.3390/mti4020019
Goodman, W., McFerran, E., Purves, R., Redpath, I., Beeken, R.J.: The untapped potential of the gaming community: narrative review. JMIR Serious Game. 6, e10161 (2018). https://doi.org/10.2196/10161
Hamari, J., Tuunanen, J.: Player types: a meta-synthesis. ToDIGRA. 1 (2014). https://doi.org/10.26503/todigra.v1i2.13
Granic, I., Lobel, A., Engels, R.C.M.E.: The benefits of playing video games. Am. Psychol. 69, 66–78 (2014). https://doi.org/10.1037/a0034857
Yee, N.: Motivations for play in online games. Cyberpsychol. Behav. 9, 772–775 (2006). https://doi.org/10.1089/cpb.2006.9.772
Hamari, J., Alha, K., Järvelä, S., Kivikangas, J.M., Koivisto, J., Paavilainen, J.: Why do players buy in-game content? An empirical study on concrete purchase motivations. Comput. Hum. Behav. 68, 538–546 (2017). https://doi.org/10.1016/j.chb.2016.11.045
Nielsen, L, Nielsen, K.S., Stage, J., Billestrup, J.: Going Global with Personas In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) Human-Computer Interaction – INTERACT 2013. Lecture Notes in Computer Science, vol. 8120, pp. 123–133. Springer, Heidelberg (2019).https://doi.org/10.1007/978-1-4471-7427-1_7
McGinn, J., Kotamraju, N.: Data-driven persona development. In: Proceeding of the Twenty-Sixth Annual CHI Conference on Human Factors In Computing Systems - CHI 2008, p. 1521. ACM Press, Florence, Italy (2008). https://doi.org/10.1145/1357054.1357292
Salminen, J., Guan, K., Jung, S.-G., Jansen, B.J.: A survey of 15 years of data-driven persona development. Int. J. Hum.-Comput. Interact. 37, 1685–1708 (2021). https://doi.org/10.1080/10447318.2021.1908670
Salminen, J.O., Jung, S., Jansen, B.J.: Are data-driven personas considered harmful?: Diversifying user understandings with more than algorithms. Pers. Stud. 7, 48–63 (2021). https://doi.org/10.21153/psj2021vol7no1art1236
Salminen, J., Jansen, B.J., An, J., Kwak, H., Jung, S.-G.: Automatic persona generation for online content creators: conceptual rationale and a research agenda. In: Personas - User Focused Design. Human–Computer Interaction Series, pp. 135–160. Springer London (2019).https://doi.org/10.1007/978-1-4471-7427-1_8
Shibuya, A., Teramoto, M., Shoun, A., Akiyama, K.: Long-term effects of in-game purchases and event game mechanics on young mobile social game players in Japan. Simul. Gaming 50, 76–92 (2019). https://doi.org/10.1177/1046878118819677
Xu, Z., Dukes, A.: Personalization from customer data aggregation using list price. Manage. Sci. 68, 960–980 (2022). https://doi.org/10.1287/mnsc.2021.3977
Margaris, D., Spiliotopoulos, D., Vassilakis, C.: Social relations versus near neighbours: reliable recommenders in limited information social network collaborative filtering for online advertising. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1160–1167. ACM, Vancouver British Columbia Canada (2019). https://doi.org/10.1145/3341161.3345620
Kluver, D., Ekstrand, M.D., Konstan, J.A.: Rating-Based Collaborative Filtering: Algorithms and Evaluation. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 344–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90092-6_10
Tychsen, A., Canossa, A.: Defining personas in games using metrics. In: Proceedings of the 2008 Conference on Future Play Research, Play, Share - Future Play 2008, p. 73. ACM Press, Toronto, Ontario, Canada (2008). https://doi.org/10.1145/1496984.1496997
Canossa, A., Drachen, A.: Play-Personas: Behaviours and Belief Systems in User-Centred Game Design. In: Gross, T., et al. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 510–523. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03658-3_55
Amyrotos, C., Andreou, P., Germanakos, P.: Human-centred persona driven personalization in business data analytics. In: Adjunct Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, pp. 175–180. ACM, Utrecht Netherlands (2021). https://doi.org/10.1145/3450614.3462241
Salminen, J., Vahlo, J., Koponen, A., Jung, S.-G., Chowdhury, S.A., Jansen, B.J.: Designing prototype player personas from a game preference survey. In: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–8. ACM, Honolulu HI USA (2020). https://doi.org/10.1145/3334480.3382785
Jansen, B.J., Jung, S.-G., Salminen, J., Guan, K.W., Nielsen, L.: Strengths and weaknesses of persona creation methods: guidelines and opportunities for digital innovations. In: Presented at the Hawaii International Conference on System Sciences (2021). https://doi.org/10.24251/HICSS.2021.604
Vahlo, J., Koponen, A.: Player personas and game choice. In: Lee, N. (ed.) Encyclopedia of Computer Graphics and Games, pp. 1–6. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-08234-9_149-1
Zhang, X., Jia, Z., Jia, S.: User research and persona building method in mobile games. J. Phys.: Conf. Ser. 1168, 032043 (2019). https://doi.org/10.1088/1742-6596/1168/3/032043
Rogstad, E.T.: Gender in eSports research: a literature review. Eur. J. Sport Soc. 19, 1–19 (2021). https://doi.org/10.1080/16138171.2021.1930941
Park, D., Kang, J.: Constructing data-driven personas through an analysis of mobile application store data. Appl. Sci. 12, 2869 (2022). https://doi.org/10.3390/app12062869
Jansen, B.J., Jung, S., Salminen, J.: Creating manageable persona sets from large user populations. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–6. ACM, Glasgow Scotland UK (2019). https://doi.org/10.1145/3290607.3313006
Zhang, X., Brown, H.-F., Shankar, A.: Data-driven personas: constructing archetypal users with clickstreams and user telemetry. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 5350–5359. ACM, San Jose California USA (2016). https://doi.org/10.1145/2858036.2858523
Salminen, J., Guan, K., Nielsen, L., Jung, S.-G., Jansen, B.J.: A Template for Data-Driven Personas: Analyzing 31 Quantitatively Oriented Persona Profiles. In: Yamamoto, S., Mori, H. (eds.) HCII 2020. LNCS, vol. 12184, pp. 125–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50020-7_8
Kouroupetroglou, G., Spiliotopoulos, D.: Usability methodologies for real-life voice user interfaces: Int. J. Inf. Technol. Web Eng. 4, 78–94 (2009).https://doi.org/10.4018/jitwe.2009100105
Zhang, G.: Creating Enhanced User Experience Through Persona and Interactive Design: A Case of Designing a Motion Sensing Game. In: Marcus, A., Wang, W. (eds.) HCII 2019. LNCS, vol. 11583, pp. 382–394. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23570-3_28
An, J., Cho, H., Kwak, H., Hassen, M.Z., Jansen, B.J.: Towards automatic persona generation using social media. In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), pp. 206–211. IEEE, Vienna, Austria (2016). https://doi.org/10.1109/W-FiCloud.2016.51
Jung, S.-G., An, J., Kwak, H., Ahmad, M., Nielsen, L., Jansen, B.J.: Persona generation from aggregated social media data. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1748–1755. ACM, Denver Colorado USA (2017). https://doi.org/10.1145/3027063.3053120
Salminen, J., Jung, S., Jansen, B.: The future of data-driven personas: a marriage of online analytics numbers and human attributes: In: Proceedings of the 21st International Conference on Enterprise Information Systems, pp. 608–615. SCITEPRESS - Science and Technology Publications, Heraklion, Crete, Greece (2019). https://doi.org/10.5220/0007744706080615
Salminen, J., Jung, S.-G., Jansen, B.: Developing persona analytics towards persona science. In: 27th International Conference on Intelligent User Interfaces, pp. 323–344. ACM, Helsinki Finland (2022). https://doi.org/10.1145/3490099.3511144
Spiliotopoulos, D., Margaris, D., Vassilakis, C.: Data-assisted persona construction using social media data. BDCC. 4, 21 (2020). https://doi.org/10.3390/bdcc4030021
Watanabe, Y., et al.: Retrospective based on data-driven persona significance in B-to-B software development. In: Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Results, pp. 89–92. ACM, Gothenburg Sweden (2018). https://doi.org/10.1145/3183399.3183410
An, J., Kwak, H., Jung, S., Salminen, J., Admad, M., Jansen, B.: Imaginary people representing real numbers: generating personas from online social media data. ACM Trans. Web. 12, 1–26 (2018). https://doi.org/10.1145/3265986
An, J., Kwak, H., Jansen, B.J.: Validating social media data for automatic persona generation. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), pp. 1–6. IEEE, Agadir, Morocco (2016). https://doi.org/10.1109/AICCSA.2016.7945816
Salminen, J., Jung, S., Kamel, A.M.S., Santos, J.M., Jansen, B.J.: Using artificially generated pictures in customer-facing systems: an evaluation study with data-driven personas. Behav. Inf. Technol. 41, 905–921 (2022). https://doi.org/10.1080/0144929X.2020.1838610
Xydas, G., Spiliotopoulos, D., Kouroupetroglou, G.: Modeling Prosodic Structures in Linguistically Enriched Environments. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2004. LNCS (LNAI), vol. 3206, pp. 521–528. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30120-2_66
Rhee, C.E., Choi, J.: Effects of personalization and social role in voice shopping: an experimental study on product recommendation by a conversational voice agent. Comput. Hum. Behav. 109, 106359 (2020). https://doi.org/10.1016/j.chb.2020.106359
Xiao, W., Zhao, H., Pan, H., Song, Y., Zheng, V.W., Yang, Q.: Beyond personalization: social content recommendation for creator equality and consumer satisfaction. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 235–245. ACM, Anchorage AK USA (2019). https://doi.org/10.1145/3292500.3330965
Park, H.W., Grover, I., Spaulding, S., Gomez, L., Breazeal, C.: A model-free affective reinforcement learning approach to personalization of an autonomous social robot companion for early literacy education. AAAI. 33, 687–694 (2019). https://doi.org/10.1609/aaai.v33i01.3301687
Aivazoglou, M., et al.: A fine-grained social network recommender system. Soc. Netw. Anal. Min. 10(1), 1–18 (2019). https://doi.org/10.1007/s13278-019-0621-7
Metz, M., Kruikemeier, S., Lecheler, S.: Personalization of politics on Facebook: examining the content and effects of professional, emotional and private self-personalization. Inf. Commun. Soc. 23, 1481–1498 (2020). https://doi.org/10.1080/1369118X.2019.1581244
Ferrari, A., Micucci, D., Mobilio, M., Napoletano, P.: On the personalization of classification models for human activity recognition. IEEE Access. 8, 32066–32079 (2020). https://doi.org/10.1109/ACCESS.2020.2973425
Rajawat, A.S., Upadhyay, A.R.: Web personalization model using modified S3VM algorithm for developing recommendation process. In: 2nd International Conference on Data, Engineering and Applications (IDEA). pp. 1–6. IEEE, Bhopal, India (2020). https://doi.org/10.1109/IDEA49133.2020.9170701
Margaris, D., Georgiadis, P., Vassilakis, C.: A collaborative filtering algorithm with clustering for personalized web service selection in business processes. In: 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS), pp. 169–180. IEEE, Athens, Greece (2015). https://doi.org/10.1109/RCIS.2015.7128877
Javed Mehedi Shamrat, F.M., Tasnim, Z., Ghosh, P., Majumder, A., Hasan, Md.Z.: Personalization of job circular announcement to applicants using decision tree classification algorithm. In: 2020 IEEE International Conference for Innovation in Technology (INOCON), pp. 1–5. IEEE, Bangluru, India (2020). https://doi.org/10.1109/INOCON50539.2020.9298253
Naudet, Y., Antoniou, A., Lykourentzou, I., Tobias, E., Rompa, J., Lepouras, G.: Museum personalization based on gaming and cognitive styles: the BLUE experiment. Int. J. Virtual Communities Soc. Networking. 7, 1–30 (2015). https://doi.org/10.4018/IJVCSN.2015040101
Harteveld, C., Sutherland, S.C.: Personalized gaming for motivating social and behavioral science participation. In: Proceedings of the 2017 ACM Workshop on Theory-Informed User Modeling for Tailoring and Personalizing Interfaces, pp. 31–38. ACM, Limassol Cyprus (2017). https://doi.org/10.1145/3039677.3039681
Raptis, G.E., Fidas, C., Avouris, N.: Cultural heritage gaming: effects of human cognitive styles on players’ performance and visual behavior. In: Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 343–346. ACM, Bratislava Slovakia (2017). https://doi.org/10.1145/3099023.3099090
Jamil, A., Nadeem Faisal, C.M., Habib, M.A., Jabbar, S., Ahmad, H.: Analyzing the Impact of Age and Gender on User Interaction in Gaming Environment. In: Khanna, A., Gupta, D., Bhattacharyya, S., Snasel, V., Platos, J., Hassanien, A.E. (eds.) International Conference on Innovative Computing and Communications. AISC, vol. 1087, pp. 721–729. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1286-5_64
Barbiero, A., Blasi, S., Schwidtal, J.M.: The Impact of End-User Aggregation on the Electricity Business Ecosystem: Evidence from Europe. In: Sedita, S.R., Blasi, S. (eds.) Rethinking Clusters. SDGS, pp. 213–226. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61923-7_15
Shi, L., Song, G., Cheng, G., Liu, X.: A user-based aggregation topic model for understanding user’s preference and intention in social network. Neurocomputing 413, 1–13 (2020). https://doi.org/10.1016/j.neucom.2020.06.099
Margaris, D., Kobusinska, A., Spiliotopoulos, D., Vassilakis, C.: An adaptive social network-aware collaborative filtering algorithm for improved rating prediction accuracy. IEEE Access. 8, 68301–68310 (2020). https://doi.org/10.1109/ACCESS.2020.2981567
Cui, Z., et al.: Personalized recommendation system based on collaborative filtering for IoT scenarios. IEEE Trans. Serv. Comput. 13, 685–695 (2020). https://doi.org/10.1109/TSC.2020.2964552
Salminen, J., Santos, J.M., Jung, S.-G., Eslami, M., Jansen, B.J.: Persona transparency: analyzing the impact of explanations on perceptions of data-driven personas. Int. J. Hum.-Comput. Interact. 36, 788–800 (2020). https://doi.org/10.1080/10447318.2019.1688946
Salminen, J., Jung, S.-G., Chowdhury, S., Robillos, D.R., Jansen, B.: The ability of personas: an empirical evaluation of altering incorrect preconceptions about users. Int. J. Hum Comput Stud. 153, 102645 (2021). https://doi.org/10.1016/j.ijhcs.2021.102645
Petrovskaya, E., Zendle, D.: Predatory monetisation? A categorisation of unfair, misleading and aggressive monetisation techniques in digital games from the player perspective. J Bus Ethics.1–17 (2021).https://doi.org/10.1007/s10551-021-04970-6
King, D.L., Delfabbro, P.H., Gainsbury, S.M., Dreier, M., Greer, N., Billieux, J.: Unfair play? Video games as exploitative monetized services: an examination of game patents from a consumer protection perspective. Comput. Hum. Behav. 101, 131–143 (2019). https://doi.org/10.1016/j.chb.2019.07.017
Close, J., Spicer, S.G., Nicklin, L.L., Uther, M., Lloyd, J., Lloyd, H.: Secondary analysis of loot box data: are high-spending “whales” wealthy gamers or problem gamblers? Addict. Behav. 117, 106851 (2021). https://doi.org/10.1016/j.addbeh.2021.106851
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Spiliotopoulos, D., Margaris, D., Koutrakis, K.N., Philippopoulos, P.I., Vassilakis, C. (2022). Persona Finetuning for Online Gaming Using Personalisation Techniques. In: Meiselwitz, G., et al. HCI International 2022 - Late Breaking Papers. Interaction in New Media, Learning and Games. HCII 2022. Lecture Notes in Computer Science, vol 13517. Springer, Cham. https://doi.org/10.1007/978-3-031-22131-6_48
Download citation
DOI: https://doi.org/10.1007/978-3-031-22131-6_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22130-9
Online ISBN: 978-3-031-22131-6
eBook Packages: Computer ScienceComputer Science (R0)