Abstract
Down-sampling algorithms are adopted to simplify the point clouds and save the computation cost on subsequent tasks. Existing learning-based sampling methods often need to train a big sampling network to support sampling under different resolutions, which must generate sampled points with the costly maximum resolution even if only low-resolution points need to be sampled. In this work, we propose a novel resolution-free point clouds sampling network to directly sample the original point cloud to different resolutions, which is conducted by optimizing non-learning-based initial sampled points to better positions. Besides, we introduce data distillation to assist the training process by considering the differences between task network outputs from original point clouds and sampled points. Experiments on point cloud reconstruction and recognition tasks demonstrate that our method can achieve SOTA performances with lower time and memory cost than existing learning-based sampling strategies. Codes are available at https://github.com/Tianxinhuang/PCDNet.
T. Huang and J. Zhang—Indicates equal contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: International Conference on Machine Learning, pp. 40–49. PMLR (2018)
Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information distillation for knowledge transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9163–9171 (2019)
Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)
Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)
Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Chen, H., et al.: Data-free learning of student networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3514–3522 (2019)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Dovrat, O., Lang, I., Avidan, S.: Learning to sample. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2760–2769 (2019)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)
Fang, G., Song, J., Shen, C., Wang, X., Chen, D., Song, M.: Data-free adversarial distillation. arXiv preprint arXiv:1912.11006 (2019)
Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activation boundaries formed by hidden neurons. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3779–3787 (2019)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Hu, Q., et al.: RandLA-Net: efficient semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11108–11117 (2020)
Huang, T., et al.: RFNet: recurrent forward network for dense point cloud completion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12508–12517 (2021)
Huang, Z., Wang, N.: Like what you like: knowledge distill via neuron selectivity transfer. arXiv preprint arXiv:1707.01219 (2017)
Lang, I., Manor, A., Avidan, S.: SampleNet: differentiable point cloud sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7578–7588 (2020)
Li, J., Chen, B.M., Lee, G.H.: SO-Net: self-organizing network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9397–9406 (2018)
Li, R., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: PU-GAN: a point cloud upsampling adversarial network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7203–7212 (2019)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. Adv. Neural. Inf. Process. Syst. 31, 820–830 (2018)
Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8895–8904 (2019)
Lopes, R.G., Fenu, S., Starner, T.: Data-free knowledge distillation for deep neural networks. arXiv preprint arXiv:1710.07535 (2017)
Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3D object detection in point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9277–9286 (2019)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)
Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)
Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2530–2539 (2018)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420 (2019)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)
Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)
Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 206–215 (2018)
Yin, K., Chen, Z., Huang, H., Cohen-Or, D., Zhang, H.: LOGAN: unpaired shape transform in latent overcomplete space. ACM Trans. Graph. (TOG) 38(6), 1–13 (2019)
Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: PU-Net: point cloud upsampling network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2799 (2018)
Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)
Acknowledgement
We thank all authors, reviewers and the chair for the excellent contributions. This work is supported by the National Science Foundation 62088101.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, T., Zhang, J., Chen, J., Liu, Y., Liu, Y. (2022). Resolution-Free Point Cloud Sampling Network with Data Distillation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13662. Springer, Cham. https://doi.org/10.1007/978-3-031-20086-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-20086-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20085-4
Online ISBN: 978-3-031-20086-1
eBook Packages: Computer ScienceComputer Science (R0)