Skip to main content

Hierarchical Feature Alignment Network for Unsupervised Video Object Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Optical flow is an easily conceived and precious cue for advancing unsupervised video object segmentation (UVOS). Most of the previous methods directly extract and fuse the motion and appearance features for segmenting target objects in the UVOS setting. However, optical flow is intrinsically an instantaneous velocity of all pixels among consecutive frames, thus making the motion features not aligned well with the primary objects among the corresponding frames. To solve the above challenge, we propose a concise, practical, and efficient architecture for appearance and motion feature alignment, dubbed hierarchical feature alignment network (HFAN). Specifically, the key merits in HFAN are the sequential Feature AlignMent (FAM) module and the Feature AdaptaTion (FAT) module, which are leveraged for processing the appearance and motion features hierarchically. FAM is capable of aligning both appearance and motion features with the primary object semantic representations, respectively. Further, FAT is explicitly designed for the adaptive fusion of appearance and motion features to achieve a desirable trade-off between cross-modal features. Extensive experiments demonstrate the effectiveness of the proposed HFAN, which reaches a new state-of-the-art performance on DAVIS-16, achieving 88.7 \( \mathcal {J} \& \mathcal {F}\) Mean, i.e., a relative improvement of 3.5% over the best published result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhter, I., Ali, M., Faisal, M., Hartley, R.: Epo-net: Exploiting geometric constraints on dense trajectories for motion saliency. In: WACV (2020)

    Google Scholar 

  2. Chen, C., Wang, G., Peng, C., Zhang, X., Qin, H.: Improved robust video saliency detection based on long-term spatial-temporal information. In: TIP (2019)

    Google Scholar 

  3. Chen, T., Yao, Y., Zhang, L., Wang, Q., Xie, G., Shen, F.: Saliency guided inter-and intra-class relation constraints for weakly supervised semantic segmentation. In: TMM (2022)

    Google Scholar 

  4. Chen, Y., Han, C., Wang, N., Zhang, Z.: Revisiting feature alignment for one-stage object detection. arXiv preprint arXiv:1908.01570 (2019)

  5. Cheng, H.K., Tai, Y.W., Tang, C.K.: Modular interactive video object segmentation: Interaction-to-mask, propagation and difference-aware fusion. In: CVPR (2021)

    Google Scholar 

  6. Cheng, J., Tsai, Y.H., Wang, S., Yang, M.H.: Segflow: Joint learning for video object segmentation and optical flow. In: ICCV (2017)

    Google Scholar 

  7. Contributors, M.: MMSegmentation: Openmmlab semantic segmentation toolbox and benchmark (2020). https://github.com/open-mmlab/mmsegmentation

  8. Duke, B., Ahmed, A., Wolf, C., Aarabi, P., Taylor, G.W.: Sstvos: Sparse spatiotemporal transformers for video object segmentation. In: CVPR (2021)

    Google Scholar 

  9. Fan, D.P., Wang, W., Cheng, M.M., Shen, J.: Shifting more attention to video salient object detection. In: CVPR (2019)

    Google Scholar 

  10. Giordano, D., Murabito, F., Palazzo, S., Spampinato, C.: Superpixel-based video object segmentation using perceptual organization and location prior. In: CVPR (2015)

    Google Scholar 

  11. Gu, Y., Wang, L., Wang, Z., Liu, Y., Cheng, M.M., Lu, S.P.: Pyramid constrained self-attention network for fast video salient object detection. In: AAAI (2020)

    Google Scholar 

  12. Han, B., Davis, L.S.: Density-based multifeature background subtraction with support vector machine. In: TPAMI (2011)

    Google Scholar 

  13. Han, J., Ding, J., Li, J., Xia, G.S.: Align deep features for oriented object detection. In: TGRS (2021)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Heo, Y., Koh, Y.J., Kim, C.S.: Guided interactive video object segmentation using reliability-based attention maps. In: CVPR (2021)

    Google Scholar 

  16. Huang, S., Lu, Z., Cheng, R., He, C.: Fapn: Feature-aligned pyramid network for dense image prediction. In: ICCV (2021)

    Google Scholar 

  17. Huang, Z., Wei, Y., Wang, X., Shi, H., Liu, W., Huang, T.S.: Alignseg: Feature-aligned segmentation networks. In: TPAMI (2021)

    Google Scholar 

  18. Hui, T., et al.: Collaborative spatial-temporal modeling for language-queried video actor segmentation. In: CVPR (2021)

    Google Scholar 

  19. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: Evolution of optical flow estimation with deep networks. In: CVPR (2017)

    Google Scholar 

  20. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  21. Jain, S.D., Xiong, B., Grauman, K.: Fusionseg: Learning to combine motion and appearance for fully automatic segmentation of generic objects in videos. In: CVPR (2017)

    Google Scholar 

  22. Ji, G.P., Fu, K., Wu, Z., Fan, D.P., Shen, J., Shao, L.: Full-duplex strategy for video object segmentation. In: ICCV (2021)

    Google Scholar 

  23. Johnander, J., Danelljan, M., Brissman, E., Khan, F.S., Felsberg, M.: A generative appearance model for end-to-end video object segmentation. In: CVPR (2019)

    Google Scholar 

  24. Khoreva, A., Rohrbach, A., Schiele, B.: Video object segmentation with language referring expressions. In: ACCV (2018)

    Google Scholar 

  25. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian edge potentials. In: NeurIPS (2011)

    Google Scholar 

  26. Lao, D., Zhu, P., Wonka, P., Sundaramoorthi, G.: Flow-guided video inpainting with scene templates. In: ICCV (2021)

    Google Scholar 

  27. Li, G., Xie, Y., Wei, T., Wang, K., Lin, L.: Flow guided recurrent neural encoder for video salient object detection. In: CVPR (2018)

    Google Scholar 

  28. Li, H., Chen, G., Li, G., Yu, Y.: Motion guided attention for video salient object detection. In: ICCV (2019)

    Google Scholar 

  29. Li, S., Seybold, B., Vorobyov, A., Lei, X., Kuo, C.-C.J.: Unsupervised video object segmentation with motion-based bilateral networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 215–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_13

    Chapter  Google Scholar 

  30. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: CVPR (2019)

    Google Scholar 

  31. Li, X., et al.: Semantic flow for fast and accurate scene parsing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 775–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_45

    Chapter  Google Scholar 

  32. Liang, Y., Li, X., Jafari, N., Chen, Q.: Video object segmentation with adaptive feature bank and uncertain-region refinement. In: NeurIPS (2020)

    Google Scholar 

  33. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  34. Liu, D., Yu, D., Wang, C., Zhou, P.: F2net: Learning to focus on the foreground for unsupervised video object segmentation. In: AAAI (2021)

    Google Scholar 

  35. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  36. Lu, X., Wang, W., Danelljan, M., Zhou, T., Shen, J., Van Gool, L.: Video object segmentation with episodic graph memory networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 661–679. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_39

    Chapter  Google Scholar 

  37. Lu, X., Wang, W., Ma, C., Shen, J., Shao, L., Porikli, F.: See more, know more: Unsupervised video object segmentation with co-attention siamese networks. In: CVPR (2019)

    Google Scholar 

  38. Mahadevan, S., Athar, A., Ošep, A., Hennen, S., Leal-Taixé, L., Leibe, B.: Making a case for 3d convolutions for object segmentation in videos. In: BMVC (2020)

    Google Scholar 

  39. Mao, Y., Wang, N., Zhou, W., Li, H.: Joint inductive and transductive learning for video object segmentation. In: ICCV (2021)

    Google Scholar 

  40. Miao, J., Wu, Y., Liu, P., Ding, Y., Yang, Y.: Pose-guided feature alignment for occluded person re-identification. In: ICCV (2019)

    Google Scholar 

  41. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)

    Google Scholar 

  42. Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. In: TPAMI (2013)

    Google Scholar 

  43. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Fast user-guided video object segmentation by interaction-and-propagation networks. In: CVPR (2019)

    Google Scholar 

  44. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: ICCV (2019)

    Google Scholar 

  45. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: ICCV (2013)

    Google Scholar 

  46. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  47. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)

    Google Scholar 

  48. Perazzi, F., Wang, O., Gross, M., Sorkine-Hornung, A.: Fully connected object proposals for video segmentation. In: ICCV (2015)

    Google Scholar 

  49. Prest, A., Leistner, C., Civera, J., Schmid, C., Ferrari, V.: Learning object class detectors from weakly annotated video. In: CVPR (2012)

    Google Scholar 

  50. Ren, S., Liu, W., Liu, Y., Chen, H., Han, G., He, S.: Reciprocal transformations for unsupervised video object segmentation. In: CVPR (2021)

    Google Scholar 

  51. Seo, S., Lee, J.-Y., Han, B.: Urvos: Unified referring video object segmentation network with a large-scale benchmark. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 208–223. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_13

    Chapter  Google Scholar 

  52. Seong, H., Oh, S.W., Lee, J.Y., Lee, S., Lee, S., Kim, E.: Hierarchical memory matching network for video object segmentation. In: ICCV (2021)

    Google Scholar 

  53. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR (2016)

    Google Scholar 

  54. Siam, M., et al.: Video object segmentation using teacher-student adaptation in a human robot interaction (hri) setting. In: ICRA (2019)

    Google Scholar 

  55. Song, H., Wang, W., Zhao, S., Shen, J., Lam, K.-M.: Pyramid dilated deeper convlstm for video salient object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 744–760. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_44

    Chapter  Google Scholar 

  56. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In: CVPR (2018)

    Google Scholar 

  57. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  58. Tokmakov, P., Alahari, K., Schmid, C.: Learning video object segmentation with visual memory. In: ICCV (2017)

    Google Scholar 

  59. Tokmakov, P., Schmid, C., Alahari, K.: Learning to segment moving objects. In: IJCV (2019)

    Google Scholar 

  60. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  61. Ventura, C., Bellver, M., Girbau, A., Salvador, A., Marques, F., Giro-i Nieto, X.: Rvos: End-to-end recurrent network for video object segmentation. In: CVPR (2019)

    Google Scholar 

  62. Wang, G., Zhang, T., Cheng, J., Liu, S., Yang, Y., Hou, Z.: Rgb-infrared cross-modality person re-identification via joint pixel and feature alignment. In: ICCV (2019)

    Google Scholar 

  63. Wang, W., Lu, X., Shen, J., Crandall, D.J., Shao, L.: Zero-shot video object segmentation via attentive graph neural networks. In: ICCV (2019)

    Google Scholar 

  64. Wang, W., Shen, J., Porikli, F.: Saliency-aware geodesic video object segmentation. In: CVPR (2015)

    Google Scholar 

  65. Wang, W., et al.: Learning unsupervised video object segmentation through visual attention. In: CVPR (2019)

    Google Scholar 

  66. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: Simple and efficient design for semantic segmentation with transformers. In: NeurIPS (2021)

    Google Scholar 

  67. Xu, N., et al.: YouTube-VOS: Sequence-to-sequence video object segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 603–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_36

    Chapter  Google Scholar 

  68. Yan, P., et al.: Semi-supervised video salient object detection using pseudo-labels. In: ICCV (2019)

    Google Scholar 

  69. Yang, S., Zhang, L., Qi, J., Lu, H., Wang, S., Zhang, X.: Learning motion-appearance co-attention for zero-shot video object segmentation. In: ICCV (2021)

    Google Scholar 

  70. Yang, Z., Wang, Q., Bertinetto, L., Hu, W., Bai, S., Torr, P.H.: Anchor diffusion for unsupervised video object segmentation. In: ICCV (2019)

    Google Scholar 

  71. Yao, Y., et al.: Non-salient region object mining for weakly supervised semantic segmentation. In: CVPR (2021)

    Google Scholar 

  72. Yao, Y., et al.: Jo-src: A contrastive approach for combating noisy labels. In: CVPR (2021)

    Google Scholar 

  73. Yao, Y., Zhang, J., Shen, F., Hua, X., Xu, J., Tang, Z.: Exploiting web images for dataset construction: A domain robust approach. In: TMM (2017)

    Google Scholar 

  74. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020)

    Google Scholar 

  75. Zhang, K., Zhao, Z., Liu, D., Liu, Q., Liu, B.: Deep transport network for unsupervised video object segmentation. In: ICCV (2021)

    Google Scholar 

  76. Zhang, M., et al.: Dynamic context-sensitive filtering network for video salient object detection. In: ICCV (2021)

    Google Scholar 

  77. Zhen, M., et al.: Learning discriminative feature with crf for unsupervised video object segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 445–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_27

    Chapter  Google Scholar 

  78. Zhou, T., Li, J., Li, X., Shao, L.: Target-aware object discovery and association for unsupervised video multi-object segmentation. In: CVPR (2021)

    Google Scholar 

  79. Zhou, T., Wang, S., Zhou, Y., Yao, Y., Li, J., Shao, L.: Motion-attentive transition for zero-shot video object segmentation. In: AAAI (2020)

    Google Scholar 

  80. Zhuo, T., Cheng, Z., Zhang, P., Wong, Y., Kankanhalli, M.: Unsupervised online video object segmentation with motion property understanding. In: TIP (2019)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 62102182 and 61976116), Natural Science Foundation of Jiangsu Province (No. BK20210327), and Fundamental Research Funds for the Central Universities (No. 30920021135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fumin Shen or Guo-Sen Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pei, G., Shen, F., Yao, Y., Xie, GS., Tang, Z., Tang, J. (2022). Hierarchical Feature Alignment Network for Unsupervised Video Object Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13694. Springer, Cham. https://doi.org/10.1007/978-3-031-19830-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19830-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19829-8

  • Online ISBN: 978-3-031-19830-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics