Skip to main content

SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Labelling point clouds fully is highly time-consuming and costly. As larger point cloud datasets with billions of points become more common, we ask whether the full annotation is even necessary, demonstrating that existing baselines designed under a fully annotated assumption only degrade slightly even when faced with 1% random point annotations. However, beyond this point, e.g., at 0.1% annotations, segmentation accuracy is unacceptably low. We observe that, as point clouds are samples of the 3D world, the distribution of points in a local neighbourhood is relatively homogeneous, exhibiting strong semantic similarity. Motivated by this, we propose a new weak supervision method to implicitly augment highly sparse supervision signals. Extensive experiments demonstrate the proposed Semantic Query Network (SQN) achieves promising performance on seven large-scale open datasets under weak supervision schemes, while requiring only 0.1% randomly annotated points for training, greatly reducing annotation cost and effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/liuzhengzhe/One-Thing-One-Click/issues/13.

  2. 2.

    https://github.com/liuzhengzhe/One-Thing-One-Click/issues/8.

  3. 3.

    https://www.cloudcompare.org/.

References

  1. Aksoy, E.E., Baci, S., Cavdar, S.: Salsanet: fast road and vehicle segmentation in LiDAR point clouds for autonomous driving. In: IV, pp. 926–932 (2019)

    Google Scholar 

  2. Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2D–3D-semantic data for indoor scene understanding. In: ICCV (2017)

    Google Scholar 

  3. Behley, J., et al.: SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences. In: ICCV, pp. 9297–9307 (2019)

    Google Scholar 

  4. Boulch, A., Saux, B.L., Audebert, N.: Unstructured point cloud semantic labeling using deep segmentation networks. In: 3DOR, pp. 17–24 (2017)

    Google Scholar 

  5. Boulch, A.: Generalizing discrete convolutions for unstructured point clouds. In: 3DOR. pp. 71–78 (2019)

    Google Scholar 

  6. Boulch, A., Puy, G., Marlet, R.: Fkaconv: feature-kernel alignment for point cloud convolution. In: ACCV (2020)

    Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)

    Google Scholar 

  8. Chen, Y., et al.: Shape self-correction for unsupervised point cloud understanding. In: ICCV (2021)

    Google Scholar 

  9. Cheng, M., Hui, L., Xie, J., Yang, J.: Sspc-net: Semi-supervised semantic 3d point cloud segmentation network. arXiv preprint arXiv:2104.07861 (2021)

  10. Cheng, R., Razani, R., Taghavi, E., Li, E., Liu, B.: 2–S3Net: attentive feature fusion with adaptive feature selection for sparse semantic segmentation network. arXiv preprint arXiv:2102.04530 (2021)

  11. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: Minkowski convolutional neural networks. In: CVPR, pp. 3075–3084 (2019)

    Google Scholar 

  12. Contreras, J., Denzler, J.: Edge-convolution point net for semantic segmentation of large-scale point clouds. In: IGARSS, pp. 5236–5239 (2019)

    Google Scholar 

  13. Cortinhal, T., Tzelepis, G., Aksoy, E.E.: SalsaNext: fast semantic segmentation of LiDAR point clouds for autonomous driving. In: ISVC (2020)

    Google Scholar 

  14. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: CVPR, pp. 5828–5839 (2017)

    Google Scholar 

  15. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)

    Google Scholar 

  16. Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: CVPR (2018)

    Google Scholar 

  17. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3D point clouds: a survey. IEEE TPAMI (2020)

    Google Scholar 

  18. Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M.: Semantic3D.Net: a new large-scale point cloud classification benchmark. ISPRS (2017)

    Google Scholar 

  19. Hackel, T., Wegner, J.D., Schindler, K.: Fast semantic segmentation of 3D point clouds with strongly varying density. ISPRS 3, 177–184 (2016)

    Google Scholar 

  20. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  22. Hou, J., Graham, B., Nießner, M., Xie, S.: Exploring data-efficient 3D scene understanding with contrastive scene contexts. In: CVPR (2021)

    Google Scholar 

  23. Hu, Q., Yang, B., Khalid, S., Xiao, W., Trigoni, N., Markham, A.: Towards semantic segmentation of urban-scale 3D point clouds: A dataset, benchmarks and challenges. In: CVPR (2021)

    Google Scholar 

  24. Hu, Q., et al.: RandLA-Net: efficient semantic segmentation of large-scale point clouds. In: CVPR (2020)

    Google Scholar 

  25. Huang, Q., Wang, W., Neumann, U.: Recurrent slice networks for 3D segmentation of point clouds. In: ICCV (2018)

    Google Scholar 

  26. Jaritz, M., Gu, J., Su, H.: Multi-view pointnet for 3D scene understanding. In: ICCVW (2019)

    Google Scholar 

  27. Jiang, L., et al.: Guided point contrastive learning for semi-supervised point cloud semantic segmentation. In: ICCV (2021)

    Google Scholar 

  28. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. In: NeurIPS, pp. 109–117 (2011)

    Google Scholar 

  29. Kundu, A., Yin, X., Fathi, A., Ross, D., Brewington, B., Funkhouser, T., Pantofaru, C.: Virtual multi-view fusion for 3D semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 518–535. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_31

    Chapter  Google Scholar 

  30. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2017)

    Google Scholar 

  31. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: CVPR, pp. 4558–4567 (2018)

    Google Scholar 

  32. Lei, H., Akhtar, N., Mian, A.: SegGCN: efficient 3D point cloud segmentation with fuzzy spherical kernel. In: CVPR (2020)

    Google Scholar 

  33. Lei, H., Akhtar, N., Mian, A.: Spherical kernel for efficient graph convolution on 3D point clouds. IEEE TPAMI (2020)

    Google Scholar 

  34. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: NeurIPS (2018)

    Google Scholar 

  35. Li, Y., Ma, L., Zhong, Z., Cao, D., Li, J.: TGNet: geometric graph CNN on 3D point cloud segmentation. IEEE TGRS (2019)

    Google Scholar 

  36. Liu, Y., Yi, L., Zhang, S., Fan, Q., Funkhouser, T., Dong, H.: P4contrast: contrastive learning with pairs of point-pixel pairs for rgb-d scene understanding. arXiv preprint arXiv:2012.13089 (2020)

  37. Liu, Z., Qi, X., Fu, C.W.: One thing one click: a self-training approach for weakly supervised 3d semantic segmentation. In: CVPR, pp. 1726–1736 (2021)

    Google Scholar 

  38. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3D deep learning. In: NeurIPS (2019)

    Google Scholar 

  39. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  40. Ma, L., Li, Y., Li, J., Tan, W., Yu, Y., Chapman, M.A.: Multi-scale point-wise convolutional neural networks for 3D object segmentation from LiDAR point clouds in large-scale environments. IEEE TITS (2019)

    Google Scholar 

  41. Ma, Y., Guo, Y., Liu, H., Lei, Y., Wen, G.: Global context reasoning for semantic segmentation of 3D point clouds. WACV (2020)

    Google Scholar 

  42. Meng, H.Y., Gao, L., Lai, Y.K., Manocha, D.: VV-Net: voxel vae net with group convolutions for point cloud segmentation. In: ICCV (2019)

    Google Scholar 

  43. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: Fast and accurate LiDAR semantic segmentation. In: IROS, pp. 4213–4220 (2019)

    Google Scholar 

  44. Montoya-Zegarra, J.A., Wegner, J.D., Ladickỳ, L., Schindler, K.: Mind the gap: modeling local and global context in (road) networks. In: GCPR (2014)

    Google Scholar 

  45. Papon, J., Abramov, A., Schoeler, M., Worgotter, F.: Voxel cloud connectivity segmentation-supervoxels for point clouds. In: CVPR (2013)

    Google Scholar 

  46. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR, pp. 652–660 (2017)

    Google Scholar 

  47. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)

    Google Scholar 

  48. Ren, Z., Misra, I., Schwing, A.G., Girdhar, R.: 3d spatial recognition without spatially labeled 3d. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13204–13213 (2021)

    Google Scholar 

  49. Rethage, D., Wald, J., Sturm, J., Navab, N., Tombari, F.: Fully-convolutional point networks for large-scale point clouds. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 625–640. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_37

    Chapter  Google Scholar 

  50. Rosu, R.A., Schütt, P., Quenzel, J., Behnke, S.: LatticeNet: fast point cloud segmentation using permutohedral lattices. In: RSS (2020)

    Google Scholar 

  51. Roynard, X., Deschaud, J.E., Goulette, F.: Classification of point cloud for road scene understanding with multiscale voxel deep network. In: PPNIV (2018)

    Google Scholar 

  52. Roynard, X., Deschaud, J.E., Goulette, F.: Paris-Lille-3D: a large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification. IJRR 37(6), 545–557 (2018)

    Google Scholar 

  53. Sauder, J., Sievers, B.: Self-supervised deep learning on point clouds by reconstructing space. In: NeurIPS, pp. 12962–12972 (2019)

    Google Scholar 

  54. Sharma, C., Kaul, M.: Self-supervised few-shot learning on point clouds. In: NeurIPS (2020)

    Google Scholar 

  55. Shi, X., Xu, X., Chen, K., Cai, L., Foo, C.S., Jia, K.: Label-efficient point cloud semantic segmentation: An active learning approach. arXiv preprint arXiv:2101.06931 (2021)

  56. Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In: CVPR, pp. 2530–2539 (2018)

    Google Scholar 

  57. Sun, W., et al.: Canonical capsules: unsupervised capsules in canonical pose. arXiv preprint arXiv:2012.04718 (2020)

  58. Tan, W., Qin, N., Ma, L., Li, Y., Du, J., Cai, G., Yang, K., Li, J.: Toronto-3D: A large-scale mobile LiDAR dataset for semantic segmentation of urban roadways. In: CVPRW. pp. 202–203 (2020)

    Google Scholar 

  59. Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., Han, S.: Searching efficient 3D architectures with sparse point-voxel convolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 685–702. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_41

    Chapter  Google Scholar 

  60. Tao, A., Duan, Y., Wei, Y., Lu, J., Zhou, J.: Seggroup: seg-level supervision for 3D instance and semantic segmentation. arXiv preprint arXiv:2012.10217 (2020)

  61. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS, pp. 1195–1204 (2017)

    Google Scholar 

  62. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3D. In: CVPR, pp. 3887–3896 (2018)

    Google Scholar 

  63. Tchapmi, L., Choy, C., Armeni, I., Gwak, J., Savarese, S.: Segcloud: semantic segmentation of 3D point clouds. In: 3DV, pp. 537–547 (2017)

    Google Scholar 

  64. Thabet, A., Alwassel, H., Ghanem, B.: Self-supervised learning of local features in 3D point clouds. In: CVPRW, pp. 938–939 (2020)

    Google Scholar 

  65. Thomas, H., Goulette, F., Deschaud, J.E., Marcotegui, B., LeGall, Y.: Semantic classification of 3D point clouds with multiscale spherical neighborhoods. In: 3DV, pp. 390–398 (2018)

    Google Scholar 

  66. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: ICCV, pp. 6411–6420 (2019)

    Google Scholar 

  67. Truong, G., Gilani, S.Z., Islam, S.M.S., Suter, D.: Fast point cloud registration using semantic segmentation. In: DICTA, pp. 1–8 (2019)

    Google Scholar 

  68. Varney, N., Asari, V.K., Graehling, Q.: DALES: a large-scale aerial LiDAR data set for semantic segmentation. In: CVPRW, pp. 186–187 (2020)

    Google Scholar 

  69. Varney, N., Asari, V.K., Graehling, Q.: Pyramid point: a multi-level focusing network for revisiting feature layers. arXiv preprint arXiv:2011.08692 (2020)

  70. Wang, B., et al.: RangUDF: semantic surface reconstruction from 3d point clouds. arXiv preprint arXiv:2204.09138 (2022)

  71. Wang, D., Shang, Y.: A new active labeling method for deep learning. In: IJCNN, pp. 112–119. IEEE (2014)

    Google Scholar 

  72. Wang, H., Rong, X., Yang, L., Wang, S., Tian, Y.: Towards weakly supervised semantic segmentation in 3D graph-structured point clouds of wild scenes. In: BMVC, p. 284 (2019)

    Google Scholar 

  73. Wang, H., Liu, Q., Yue, X., Lasenby, J., Kusner, M.J.: Pre-training by completing point clouds. arXiv preprint arXiv:2010.01089 (2020)

  74. Wang, L., Huang, Y., Hou, Y., Zhang, S., Shan, J.: Graph attention convolution for point cloud semantic segmentation. In: CVPR (2019)

    Google Scholar 

  75. Wang, P., Yao, W.: A new weakly supervised approach for als point cloud semantic segmentation. arXiv preprint arXiv:2110.01462 (2021)

  76. Wang, R., Albooyeh, M., Ravanbakhsh, S.: Equivariant maps for hierarchical structures. arXiv preprint arXiv:2006.03627 (2020)

  77. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM TOG 38(5), 1–12 (2019)

    Article  Google Scholar 

  78. Wei, J., Lin, G., Yap, K.H., Hung, T.Y., Xie, L.: Multi-path region mining for weakly supervised 3D semantic segmentation on point clouds. In: CVPR, pp. 4384–4393 (2020)

    Google Scholar 

  79. Wei, J., Lin, G., Yap, K.H., Liu, F., Hung, T.Y.: Dense supervision propagation for weakly supervised semantic segmentation on 3d point clouds. arXiv preprint arXiv:2107.11267 (2021)

  80. Wu, B., Wan, A., Yue, X., Keutzer, K.: SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud. In: ICRA, pp. 1887–1893 (2018)

    Google Scholar 

  81. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: SqueezeSegV2: improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud. In: ICRA, pp. 4376–4382 (2019)

    Google Scholar 

  82. Wu, T.H., et al.: Redal: region-based and diversity-aware active learning for point cloud semantic segmentation. In: ICCV, pp. 15510–15519 (2021)

    Google Scholar 

  83. Wu, W., Qi, Z., Fuxin, L.: PointConv: Deep convolutional networks on 3D point clouds. In: CVPR, pp. 9621–9630 (2018)

    Google Scholar 

  84. Wu, Y., et al.: Pointmatch: a consistency training framework for weakly supervisedsemantic segmentation of 3d point clouds. arXiv preprint arXiv:2202.10705 (2022)

  85. Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: PointContrast: unsupervised pre-training for 3D point cloud understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 574–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_34

    Chapter  Google Scholar 

  86. Xu, C., Wu, B., Wang, Z., Zhan, W., Vajda, P., Keutzer, K., Tomizuka, M.: SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_1

    Chapter  Google Scholar 

  87. Xu, X., Lee, G.H.: Weakly supervised semantic point cloud segmentation: Towards 10x fewer labels. In: CVPR, pp. 13706–13715 (2020)

    Google Scholar 

  88. Yan, X., Gao, J., Li, J., Zhang, R., Li, Z., Huang, R., Cui, S.: Sparse single sweep lidar point cloud segmentation via learning contextual shape priors from scene completion. In: AAAI (2020)

    Google Scholar 

  89. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: ICCV, pp. 5589–5598 (2020)

    Google Scholar 

  90. Ye, X., Li, J., Huang, H., Du, L., Zhang, X.: 3D recurrent neural networks with context fusion for point cloud semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 415–430. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_25

    Chapter  Google Scholar 

  91. Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Okumura, M., Shinozaki, T.: Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  92. Zhang, F., Fang, J., Wah, B., Torr, P.: Deep FusionNet for point cloud semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 644–663. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_38

    Chapter  Google Scholar 

  93. Zhang, Y., Li, Z., Xie, Y., Qu, Y., Li, C., Mei, T.: Weakly supervised semantic segmentation for large-scale point cloud. In: AAAI (2021)

    Google Scholar 

  94. Zhang, Y., Qu, Y., Xie, Y., Li, Z., Zheng, S., Li, C.: Perturbed self-distillation: Weakly supervised large-scale point cloud semantic segmentation. In: ICCV, pp. 15520–15528 (2021)

    Google Scholar 

  95. Zhang, Y., et al.: PolarNet: an improved grid representation for online LiDAR point clouds semantic segmentation. In: CVPR, pp. 9601–9610 (2020)

    Google Scholar 

  96. Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3D features on any point-cloud. arXiv preprint arXiv:2101.02691 (2021)

  97. Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3d features on any point-cloud. In: ICCV (2021)

    Google Scholar 

  98. Zhang, Z., Hua, B.S., Yeung, S.K.: ShellNet: efficient point cloud convolutional neural networks using concentric shells statistics. In: ICCV, pp. 1607–1616 (2019)

    Google Scholar 

  99. Zhao, H., Jiang, L., Fu, C.W., Jia, J.: PointWeb: enhancing local neighborhood features for point cloud processing. In: CVPR (2019)

    Google Scholar 

  100. Zhao, H., Jiang, L., Jia, J., Torr, P., Koltun, V.: Point Transformer. arXiv preprint arXiv:2012.09164 (2020)

  101. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

    Google Scholar 

  102. Zhu, X., et al.: Weakly supervised 3d semantic segmentation using cross-image consensus and inter-voxel affinity relations. In: ICCV (2021)

    Google Scholar 

  103. Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation. In: CVPR (2021)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 61972435, U20A20185), China Scholarship Council (CSC) scholarship, and Huawei UK AI Fellowship. Qingyong Hu and Bo Yang were partially supported by Shenzhen Science and Technology Innovation Commission (JCYJ20210324120603011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4745 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Q. et al. (2022). SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13687. Springer, Cham. https://doi.org/10.1007/978-3-031-19812-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19812-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19811-3

  • Online ISBN: 978-3-031-19812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics