Abstract
We describe the fifth edition of the CheckThat! lab, part of the 2022 Conference and Labs of the Evaluation Forum (CLEF). The lab evaluates technology supporting tasks related to factuality in multiple languages: Arabic, Bulgarian, Dutch, English, German, Spanish, and Turkish. Task 1 asks to identify relevant claims in tweets in terms of check-worthiness, verifiability, harmfullness, and attention-worthiness. Task 2 asks to detect previously fact-checked claims that could be relevant to fact-check a new claim. It targets both tweets and political debates/speeches. Task 3 asks to predict the veracity of the main claim in a news article. CheckThat! was the most popular lab at CLEF-2022 in terms of team registrations: 137 teams. More than one-third (37%) of them actually participated: 18, 7, and 26 teams submitted 210, 37, and 126 official runs for tasks 1, 2, and 3, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agirre, E., et al.: SemEval-2016 task 1: semantic textual similarity, monolingual and cross-lingual evaluation. In: Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval 2016. pp. 497–511 (2016)
Agrestia, S., Hashemianb, A.S., Carmanc, M.J.: PoliMi-FlatEarthers at CheckThat! 2022: GPT-3 applied to claim detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 202022, Bologna, Italy (2022)
Alam, F., et al.: Fighting the COVID-19 infodemic in social media: a holistic perspective and a call to arms. In: Proceedings of the International AAAI Conference on Web and Social Media, ICWSM 2021, pp. 913–922 (2021)
Alam, F., et al.: Fighting the COVID-19 infodemic: modeling the perspective of journalists, fact-checkers, social media platforms, policy makers, and the society. In: Findings of EMNLP 2021, pp. 611–649 (2021)
Ali, Z.S., Mansour, W., Elsayed, T., Al-Ali, A.: Arafacts: the first large Arabic dataset of naturally occurring claims. In: Proceedings of the Sixth Arabic Natural Language Processing Workshop, pp. 231–236 (2021)
Althabiti, S., Alsalka, M.A., Atwell, E.: SCUoL at CheckThat! 2022: fake news detection using transformer-based models. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Arif, M., et al.: CIC at CheckThat! 2022: multi-class and cross-lingual fake news detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Ba, M.L., Berti-Equille, L., Shah, K., Hammady, H.M.: VERA: a platform for veracity estimation over web data. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, pp. 159–162 (2016)
Balouchzahi, F., Shashirekha, H., Sidorov, G.: MUCIC at CheckThat! 2021: FaDo-fake news detection and domain identification using transformers ensembling. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum, pp. 455–464 (2021)
Baly, R., et al.: What was written vs. who read it: news media profiling using text analysis and social media context. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, pp. 3364–3374 (2020)
Barrón-Cedeño, A., et al.: CheckThat! at CLEF 2020: enabling the automatic identification and verification of claims in social media. In: Jose, J.M., Yilmaz, E., Magalhães, J., Castells, P., Ferro, N., Silva, M.J., Martins, F. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 499–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_65
Barrón-Cedeño, A., et al.: Overview of CheckThat! 2020: automatic identification and verification of claims in social media. In: Arampatzis, A., et al. (eds.) CLEF 2020. LNCS, vol. 12260, pp. 215–236. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58219-7_17
Bilel, T., Mohamed Aziz, B.N., Haddad, H.: iCompass at CheckThat! 2022: ARBERT and AraBERT for Arabic checkworthy tweet identification. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Black, S., Gao, L., Wang, P., Leahy, C., Biderman, S.: GPT-neo: large scale autoregressive language modeling with mesh-tensorflow (2021). https://doi.org/10.5281/zenodo.5297715
Blanc, O., Pritzkau, A., Schade, U., Geierhos, M.: CODE at CheckThat! 2022: multi-class fake news detection of news articles with BERT. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Buliga Nicu, R.M.: Zorros at CheckThat! 2022: ensemble model for identifying relevant claims in tweets. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Capetillo, C.P., Lecuona-Gómez, D., Gómez-Adorn, H., Arroyo-Fernández, I., Neri-Chávez, J.: HBDCI at CheckThat! 2022: fake news detection using a combination of stylometric features and deep learning. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Chernyavskiy, A., Ilvovsky, D., Nakov, P.: Aschern at CLEF CheckThat! 2021: Lambda-calculus of fact-checked claims. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), pp. 8440–8451 (2020). https://doi.org/10.18653/v1/2020.acl-main.747
Cusmuliuc, C.G., Amarandei, M.A., Pelin, I., Cociorva, V.I., Iftene, A.: UAICS at CheckThat! 2021: fake news detection. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Da San Martino, G., Barrón-Cedeno, A., Wachsmuth, H., Petrov, R., Nakov, P.: SemEval-2020 task 11: detection of propaganda techniques in news articles. In: Proceedings of the 14th Workshop on Semantic Evaluation, SemEval 2020, pp. 1377–1414 (2020)
Derczynski, L., Bontcheva, K., Liakata, M., Procter, R., Hoi, G.W.S., Zubiaga, A.: SemEval-2017 task 8: RumourEval: determining rumour veracity and support for rumours. In: Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval 2017, pp. 69–76 (2017)
Dimitrov, D., et al.: SemEval-2021 task 6: detection of persuasion techniques in texts and images. In: Proceedings of the International Workshop on Semantic Evaluation, SemEval 2021, pp. 70–98 (2021)
Elsayed, T., et al.: CheckThat! at CLEF 2019: automatic identification and verification of claims. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) Advances in Information Retrieval, pp. 309–315. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-15719-7_41
Elsayed, T., et al.: Overview of the CLEF-2019 CheckThat!: automatic identification and verification of claims. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction, pp. 301–321. LNCS (2019)
Eyuboglu, A.B., Arslan, M.B., Sonmezer, E., Kutlu, M.: TOBB ETU at CheckThat! 2022: detecting attention-worthy and harmful tweets and check-worthy claims. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.): CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Frick, R.A., Vogel, I.: Fraunhofer SIT at CheckThat! 2022: ensemble similarity estimation for finding previously fact-checked claims. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Frick, R.A., Vogel, I., Nunes Grieser, I.: Fraunhofer SIT at CheckThat! 2022: semi-supervised ensemble classification for detecting check-worthy tweets. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Gencheva, P., Nakov, P., Màrquez, L., Barrón-Cedeño, A., Koychev, I.: A context-aware approach for detecting worth-checking claims in political debates. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pp. 267–276 (2017)
Gorrell, G., et al.: SemEval-2019 task 7: RumourEval, determining rumour veracity and support for rumours. In: Proceedings of the 13th International Workshop on Semantic Evaluation, SemEval 2019, pp. 845–854 (2019)
Guo, Z., Schlichtkrull, M., Vlachos, A.: A survey on automated fact-checking. Trans. Assoc. Comput. Linguist. 10, 178–206 (2022)
Hanselowski, A., et al.: A retrospective analysis of the fake news challenge stance-detection task. In: Proceedings of the 27th International Conference on Computational Linguistics, COLING 2018, pp. 1859–1874 (2018)
Hariharan, R.L., Anand Kumar, M.: NITK-IT_NLP at CheckThat! 2022: window based approach for fake news detection using transformers. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Hassan, N., Li, C., Tremayne, M.: Detecting check-worthy factual claims in presidential debates. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM 2015, pp. 1835–1838 (2015)
Hassan, N., Tremayne, M., Arslan, F., Li, C.: Comparing automated factual claim detection against judgments of journalism organizations. In: Computation+Journalism Symposium, pp. 1–5 (2016)
Hassan, N., et al.: ClaimBuster: the first-ever end-to-end fact-checking system. Proc. VLDB Endowment 10(12), 1945–1948 (2017)
Hövelmeyer, A., Boland, K., Dietze, S.: SimBa at CheckThat! 2022: lexical and semantic similarity based detection of verified claims in an unsupervised and supervised way. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Hüsünbeyi, Z.M., Deck, O., Scheffler, T.: RUB-DFL at CheckThat! 2022: transformer models and linguistic features for identifying relevant claims. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Karadzhov, G., Nakov, P., Màrquez, L., Barrón-Cedeño, A., Koychev, I.: Fully automated fact checking using external sources. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pp. 344–353 (2017)
Kavatagi, S., Rachh, R., Mulimani, M.: VTU_BGM at Check That! 2022: an autoregressive encoding model for verifying check-worthy claims. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Kazemi, A., Garimella, K., Shahi, G.K., Gaffney, D., Hale, S.A.: Research note: Tiplines to uncover misinformation on encrypted platforms: a case study of the 2019 Indian general election on whatsapp. Harvard Kennedy School Misinformation Review (2022)
Köhler, J., et al.: Overview of the CLEF-2022 CheckThat! lab task 3 on fake news detection. In: Working Notes of CLEF 2022–Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Kovachevich, N.: BERT fine-tuning approach to CLEF CheckThat! fake news detection. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Kumar, S., Kumar, G., Singh, S.R.: TextMinor at CheckThat! 2022: fake news article detection using RoBERT. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
La Barbera, D., Roitero, K., Mackenzie, J., Damiano, S., Demartini, G., Mizzaro, S.: BUM at CheckThat! 2022: a composite deep learning approach to fake news detection using evidence retrieval. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Lomonaco, F., Donabauer, G., Siino, M.: COURAGE at CheckThat! 2022: harmful tweet detection using graph neural networks and ELECTRA. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Ludwig, A., Felser, J., Xi, J., Labudde, D., Spranger, M.: FoSIL at CheckThat! 2022: using human behaviour-based optimization for text classification. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B.J., Wong, K.F., Cha, M.: Detecting rumors from microblogs with recurrent neural networks. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 3818–3824 (2016)
Manan Suri, P.K., Dudeja, S.: Asatya at CheckThat! 2022: multimodal BERT for identifying claims in tweets. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Mansour, W., Elsayed, T., Al-Ali, A.: Did i see it before? detecting previously- checked claims over twitter. In: European Conference on Information Retrieval. pp. 367–381 Springer (2022)
Martinez-Rico, J.R., Martinez-Romo, J., Araujo, L.: NLP &IRUNED at CheckThat! 2022: ensemble of classifiers for fake news detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Meaney, J., Wilson, S., Chiruzzo, L., Lopez, A., Magdy, W.: Semeval 2021 task 7: hahackathon, detecting and rating humor and offense. In: Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pp. 105–119 (2021)
Michael Shliselberg, S.D.H.: RIET Lab at CheckThat! 2022: improving decoder based re-ranking for claim matching. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Mihaylova, S., Borisova, I., Chemishanov, D., Hadzhitsanev, P., Hardalov, M., Nakov, P.: DIPS at CheckThat! 2021: verified claim retrieval. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Mihaylova, T., Karadzhov, G., Atanasova, P., Baly, R., Mohtarami, M., Nakov, P.: SemEval-2019 task 8: Fact checking in community question answering forums. In: Proceedings of the 13th International Workshop on Semantic Evaluation, SemEval 2019, pp. 860–869 (2019)
Mingzhe, D., Sujatha Das Gollapalli, S.K.N.: NUS-IDS at CheckThat! 2022: identifying check-worthiness of tweets using CheckthaT5. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., Cherry, C.: SemEval-2016 task 6: Detecting stance in tweets. In: Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval 2016, pp. 31–41 (2016)
Nakamura, K., Levy, S., Wang, W.Y.: r/fakeddit: a new multimodal benchmark dataset for fine-grained fake news detection. arXiv preprint arXiv:1911.03854 (2019)
Nakov, P., et al.: Overview of the CLEF-2022 CheckThat! lab task 1 on identifying relevant claims in tweets. In: Working Notes of CLEF 2022–Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Nakov, P., et al.: The CLEF-2022 CheckThat! Lab on fighting the covid-19 infodemic and fake news detection. In: Hagen, M., et al. (eds.) Advances in Information Retrieval, pp. 416–428. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99739-7_52
Nakov, P., et al.: Overview of the CLEF-2018 lab on automatic identification and verification of claims in political debates. In: Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum, CLEF 2018 (2018)
Nakov, P., et al.: Automated fact-checking for assisting human fact-checkers. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021, pp. 4551–4558 (2021)
Nakov, P., Da San Martino, G., Alam, F., Shaar, S., Mubarak, H., Babulkov, N.: Overview of the CLEF-2022 CheckThat! lab task 2 on detecting previously fact-checked claims. In: Working Notes of CLEF 2022–Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Nakov, P., et al.: The CLEF-2021 CheckThat! lab on detecting check-worthy claims, previously fact-checked claims, and fake news. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12657, pp. 639–649. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72240-1_75
Nakov, P., et al.: Overview of the CLEF–2021 CheckThat! lab on detecting check-worthy claims, previously fact-checked claims, and fake news. In: Candan, S., et al. (eds.) CLEF 2021. LNCS, vol. 12880, pp. 264–291. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85251-1_19
Nakov, P., et al.: SemEval-2016 Task 3: community question answering. In: Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval 2015, pp. 525–545 (2016)
Nguyen, V.H., Sugiyama, K., Nakov, P., Kan, M.Y.: FANG: leveraging social context for fake news detection using graph representation. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM 2020, pp. 1165–1174 (2020)
Oshikawa, R., Qian, J., Wang, W.Y.: A survey on natural language processing for fake news detection. In: Proceedings of the 12th Language Resources and Evaluation Conference, LREC 2020, pp. 6086–6093 (2020)
Pavlopoulos, J., Sorensen, J., Laugier, L., Androutsopoulos, I.: Semeval-2021 task 5: toxic spans detection. In: Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pp. 59–69 (2021)
Pires, T., Schlinger, E., Garrette, D.: How Multilingual is Multilingual BERT. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), Florence, Italy, pp. 4996–5001 (2019). https://doi.org/10.18653/v1/P19-1493
Pogorelov, K., et al.: FakeNews: corona virus and 5G conspiracy task at MediaEval 2020. In: Proceedings of the MediaEval 2020 Workshop, MediaEval 2020 (2020)
Popat, K., Mukherjee, S., Strötgen, J., Weikum, G.: Credibility assessment of textual claims on the web. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM 2016, pp. 2173–2178 (2016)
Pritzkau, A.: NLytics at CheckThat! 2021: check-worthiness estimation as a regression problem on transformers. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Pritzkau, A., Blanc, O., Geierhos, M., Schade, U.: NLytics at CheckThat! 2022: hierarchical multi-class fake news detection of news articles exploiting the topic structure. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Röchert, D., Shahi, G.K., Neubaum, G., Ross, B., Stieglitz, S.: The networked context of covid-19 misinformation: informational homogeneity on youtube at the beginning of the pandemic. Online Social Netw. Media 26, 100164 (2021)
Savchev, A.: AI Rational at CheckThat! 2022: using transformer models for tweet classification. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Schütz, M., et al.: AIT FHSTP at CheckThat! 2022: cross-lingual fake news detection with a large pre-trained transformer. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Schütz, M., Siegel, M.: Baseline for clef2022 - checkthat! lab task 3 (2022). https://doi.org/10.5281/zenodo.6362498
Sepúlveda-Torres, R., Saquete, E.: GPLSI team at CLEF CheckThat! 2021: fine-tuning BETO and RoBERTa. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Shaar, S., Alam, F., Da San Martino, G., Nakov, P.: The role of context in detecting previously fact-checked claims. Arxiv:2104.07423 (2021)
Shaar, S., Alam, F., Martino, G.D.S., Nakov, P.: Assisting the human fact-checkers: detecting all previously fact-checked claims in a document. arXiv preprint arXiv:2109.07410 (2021)
Shaar, S., Babulkov, N., Da San Martino, G., Nakov, P.: That is a known lie: Detecting previously fact-checked claims. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, pp. 3607–3618 (2020)
Shaar, S., et al.: Overview of the CLEF-2021 CheckThat! lab task 2 on detecting previously fact-checked claims in tweets and political debates. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Shaar, S., et al.: Overview of the CLEF-2021 CheckThat! lab task 1 on check-worthiness estimation in tweets and political debates. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Shahi, G.K.: AMUSED: an annotation framework of multi-modal social media data. arXiv:2010.00502 (2020)
Shahi, G.K., Dirkson, A., Majchrzak, T.A.: An exploratory study of COVID-19 misinformation on Twitter. Online Social Netw. Media 22, 100104 (2021)
Shahi, G.K., Struß, J.M., Mandl, T.: Overview of the CLEF-2021 CheckThat! lab: Task 3 on fake news detection. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Taboubi, B., Nessir, M.A.B., Haddad, H.: iCompass at CheckThat! 2022: combining deep language models for fake news detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Tarannum, P., Md. Arid, H., Alam, F., Noori, S.R.H.: Z-Index at CheckThat! Lab 2022: check-worthiness identification on tweet text. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Tchechmedjiev, A., et al.: ClaimsKG: a knowledge graph of fact-checked claims. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 309–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_20
Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: FEVER: a large-scale dataset for fact extraction and VERification. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2018, pp. 809–819 (2018)
Toraman, C., Ozcelik, O., Şahinuç, F., Sahin, U.: ARC-NLP at CheckThat! 2022: contradiction for harmful tweet detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Tran, H.N., Kruschwitz, U.: ur-iw-hnt at CheckThat! 2022: cross-lingual text summarization for fake news detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Truică C.O., Apostol, E.S., Paschke, A.: Awakened at CheckThat! 2022: fake news detection using BiLSTM and sentence transformer. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)
Varma, H., Jain, A., Ratadiya, P., Rathi, A.: Attestable at semeval-2021 task 9: extending statement verification with tables for unknown class, and semantic evidence finding. In: Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pp. 1276–1282 (2021)
Vasileva, S., Atanasova, P., Màrquez, L., Barrón-Cedeño, A., Nakov, P.: It takes nine to smell a rat: neural multi-task learning for check-worthiness prediction. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing, RANLP 2019, pp. 1229–1239 (2019)
Wang, N.X., Mahajan, D., Danilevsky, M., Rosenthal, S.: Semeval-2021 task 9: fact verification and evidence finding for tabular data in scientific documents (sem-tab-facts). In: Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pp. 317–326 (2021)
Williams, E., Rodrigues, P., Tran, S.: Accenture at CheckThat! 2021: interesting claim identification and ranking with contextually sensitive lexical training data augmentation. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Yasser, K., Kutlu, M., Elsayed, T.: Re-ranking web search results for better fact-checking: a preliminary study. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1783–1786 (2018)
Zhou, X., Wu, B., Fung, P.: Fight for 4230 at CLEF CheckThat! 2021: domain-specific preprocessing and pretrained model for ranking claims by check-worthiness. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)
Zubiaga, A., Liakata, M., Procter, R., Hoi, G.W.S., Tolmie, P.: Analysing how people orient to and spread rumours in social media by looking at conversational threads. PLoS ONE 11(3), e0150989 (2016)
Acknowledgments
Part of this research is carried out under the Tanbih mega-project, developed at the Qatar Computing Research Institute, HBKU, which aims to limit the impact of “fake news”, propaganda, and media bias, thus promoting digital literacy and critical thinking.
Part of this work has been funded by the German Federal Ministry of Education and Research (BMBF) under the grant no. 01FP20031J. The responsibility for the contents of this publication lies with the authors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nakov, P. et al. (2022). Overview of the CLEF–2022 CheckThat! Lab on Fighting the COVID-19 Infodemic and Fake News Detection. In: Barrón-Cedeño, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2022. Lecture Notes in Computer Science, vol 13390. Springer, Cham. https://doi.org/10.1007/978-3-031-13643-6_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-13643-6_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13642-9
Online ISBN: 978-3-031-13643-6
eBook Packages: Computer ScienceComputer Science (R0)