Skip to main content

Overview of the CLEF–2022 CheckThat! Lab on Fighting the COVID-19 Infodemic and Fake News Detection

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2022)

Abstract

We describe the fifth edition of the CheckThat! lab, part of the 2022 Conference and Labs of the Evaluation Forum (CLEF). The lab evaluates technology supporting tasks related to factuality in multiple languages: Arabic, Bulgarian, Dutch, English, German, Spanish, and Turkish. Task 1 asks to identify relevant claims in tweets in terms of check-worthiness, verifiability, harmfullness, and attention-worthiness. Task 2 asks to detect previously fact-checked claims that could be relevant to fact-check a new claim. It targets both tweets and political debates/speeches. Task 3 asks to predict the veracity of the main claim in a news article. CheckThat! was the most popular lab at CLEF-2022 in terms of team registrations: 137 teams. More than one-third (37%) of them actually participated: 18, 7, and 26 teams submitted 210, 37, and 126 official runs for tasks 1, 2, and 3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://cloud.google.com/translate.

  2. 2.

    https://zenodo.org/record/6555293.

References

  1. Agirre, E., et al.: SemEval-2016 task 1: semantic textual similarity, monolingual and cross-lingual evaluation. In: Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval 2016. pp. 497–511 (2016)

    Google Scholar 

  2. Agrestia, S., Hashemianb, A.S., Carmanc, M.J.: PoliMi-FlatEarthers at CheckThat! 2022: GPT-3 applied to claim detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 202022, Bologna, Italy (2022)

    Google Scholar 

  3. Alam, F., et al.: Fighting the COVID-19 infodemic in social media: a holistic perspective and a call to arms. In: Proceedings of the International AAAI Conference on Web and Social Media, ICWSM 2021, pp. 913–922 (2021)

    Google Scholar 

  4. Alam, F., et al.: Fighting the COVID-19 infodemic: modeling the perspective of journalists, fact-checkers, social media platforms, policy makers, and the society. In: Findings of EMNLP 2021, pp. 611–649 (2021)

    Google Scholar 

  5. Ali, Z.S., Mansour, W., Elsayed, T., Al-Ali, A.: Arafacts: the first large Arabic dataset of naturally occurring claims. In: Proceedings of the Sixth Arabic Natural Language Processing Workshop, pp. 231–236 (2021)

    Google Scholar 

  6. Althabiti, S., Alsalka, M.A., Atwell, E.: SCUoL at CheckThat! 2022: fake news detection using transformer-based models. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  7. Arif, M., et al.: CIC at CheckThat! 2022: multi-class and cross-lingual fake news detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  8. Ba, M.L., Berti-Equille, L., Shah, K., Hammady, H.M.: VERA: a platform for veracity estimation over web data. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, pp. 159–162 (2016)

    Google Scholar 

  9. Balouchzahi, F., Shashirekha, H., Sidorov, G.: MUCIC at CheckThat! 2021: FaDo-fake news detection and domain identification using transformers ensembling. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum, pp. 455–464 (2021)

    Google Scholar 

  10. Baly, R., et al.: What was written vs. who read it: news media profiling using text analysis and social media context. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, pp. 3364–3374 (2020)

    Google Scholar 

  11. Barrón-Cedeño, A., et al.: CheckThat! at CLEF 2020: enabling the automatic identification and verification of claims in social media. In: Jose, J.M., Yilmaz, E., Magalhães, J., Castells, P., Ferro, N., Silva, M.J., Martins, F. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 499–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_65

    Chapter  Google Scholar 

  12. Barrón-Cedeño, A., et al.: Overview of CheckThat! 2020: automatic identification and verification of claims in social media. In: Arampatzis, A., et al. (eds.) CLEF 2020. LNCS, vol. 12260, pp. 215–236. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58219-7_17

    Chapter  Google Scholar 

  13. Bilel, T., Mohamed Aziz, B.N., Haddad, H.: iCompass at CheckThat! 2022: ARBERT and AraBERT for Arabic checkworthy tweet identification. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  14. Black, S., Gao, L., Wang, P., Leahy, C., Biderman, S.: GPT-neo: large scale autoregressive language modeling with mesh-tensorflow (2021). https://doi.org/10.5281/zenodo.5297715

  15. Blanc, O., Pritzkau, A., Schade, U., Geierhos, M.: CODE at CheckThat! 2022: multi-class fake news detection of news articles with BERT. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  16. Buliga Nicu, R.M.: Zorros at CheckThat! 2022: ensemble model for identifying relevant claims in tweets. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  17. Capetillo, C.P., Lecuona-Gómez, D., Gómez-Adorn, H., Arroyo-Fernández, I., Neri-Chávez, J.: HBDCI at CheckThat! 2022: fake news detection using a combination of stylometric features and deep learning. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  18. Chernyavskiy, A., Ilvovsky, D., Nakov, P.: Aschern at CLEF CheckThat! 2021: Lambda-calculus of fact-checked claims. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  19. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), pp. 8440–8451 (2020). https://doi.org/10.18653/v1/2020.acl-main.747

  20. Cusmuliuc, C.G., Amarandei, M.A., Pelin, I., Cociorva, V.I., Iftene, A.: UAICS at CheckThat! 2021: fake news detection. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  21. Da San Martino, G., Barrón-Cedeno, A., Wachsmuth, H., Petrov, R., Nakov, P.: SemEval-2020 task 11: detection of propaganda techniques in news articles. In: Proceedings of the 14th Workshop on Semantic Evaluation, SemEval 2020, pp. 1377–1414 (2020)

    Google Scholar 

  22. Derczynski, L., Bontcheva, K., Liakata, M., Procter, R., Hoi, G.W.S., Zubiaga, A.: SemEval-2017 task 8: RumourEval: determining rumour veracity and support for rumours. In: Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval 2017, pp. 69–76 (2017)

    Google Scholar 

  23. Dimitrov, D., et al.: SemEval-2021 task 6: detection of persuasion techniques in texts and images. In: Proceedings of the International Workshop on Semantic Evaluation, SemEval 2021, pp. 70–98 (2021)

    Google Scholar 

  24. Elsayed, T., et al.: CheckThat! at CLEF 2019: automatic identification and verification of claims. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) Advances in Information Retrieval, pp. 309–315. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-15719-7_41

    Chapter  Google Scholar 

  25. Elsayed, T., et al.: Overview of the CLEF-2019 CheckThat!: automatic identification and verification of claims. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction, pp. 301–321. LNCS (2019)

    Google Scholar 

  26. Eyuboglu, A.B., Arslan, M.B., Sonmezer, E., Kutlu, M.: TOBB ETU at CheckThat! 2022: detecting attention-worthy and harmful tweets and check-worthy claims. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  27. Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.): CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  28. Frick, R.A., Vogel, I.: Fraunhofer SIT at CheckThat! 2022: ensemble similarity estimation for finding previously fact-checked claims. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  29. Frick, R.A., Vogel, I., Nunes Grieser, I.: Fraunhofer SIT at CheckThat! 2022: semi-supervised ensemble classification for detecting check-worthy tweets. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  30. Gencheva, P., Nakov, P., Màrquez, L., Barrón-Cedeño, A., Koychev, I.: A context-aware approach for detecting worth-checking claims in political debates. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pp. 267–276 (2017)

    Google Scholar 

  31. Gorrell, G., et al.: SemEval-2019 task 7: RumourEval, determining rumour veracity and support for rumours. In: Proceedings of the 13th International Workshop on Semantic Evaluation, SemEval 2019, pp. 845–854 (2019)

    Google Scholar 

  32. Guo, Z., Schlichtkrull, M., Vlachos, A.: A survey on automated fact-checking. Trans. Assoc. Comput. Linguist. 10, 178–206 (2022)

    Google Scholar 

  33. Hanselowski, A., et al.: A retrospective analysis of the fake news challenge stance-detection task. In: Proceedings of the 27th International Conference on Computational Linguistics, COLING 2018, pp. 1859–1874 (2018)

    Google Scholar 

  34. Hariharan, R.L., Anand Kumar, M.: NITK-IT_NLP at CheckThat! 2022: window based approach for fake news detection using transformers. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  35. Hassan, N., Li, C., Tremayne, M.: Detecting check-worthy factual claims in presidential debates. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM 2015, pp. 1835–1838 (2015)

    Google Scholar 

  36. Hassan, N., Tremayne, M., Arslan, F., Li, C.: Comparing automated factual claim detection against judgments of journalism organizations. In: Computation+Journalism Symposium, pp. 1–5 (2016)

    Google Scholar 

  37. Hassan, N., et al.: ClaimBuster: the first-ever end-to-end fact-checking system. Proc. VLDB Endowment 10(12), 1945–1948 (2017)

    Article  Google Scholar 

  38. Hövelmeyer, A., Boland, K., Dietze, S.: SimBa at CheckThat! 2022: lexical and semantic similarity based detection of verified claims in an unsupervised and supervised way. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  39. Hüsünbeyi, Z.M., Deck, O., Scheffler, T.: RUB-DFL at CheckThat! 2022: transformer models and linguistic features for identifying relevant claims. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  40. Karadzhov, G., Nakov, P., Màrquez, L., Barrón-Cedeño, A., Koychev, I.: Fully automated fact checking using external sources. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pp. 344–353 (2017)

    Google Scholar 

  41. Kavatagi, S., Rachh, R., Mulimani, M.: VTU_BGM at Check That! 2022: an autoregressive encoding model for verifying check-worthy claims. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  42. Kazemi, A., Garimella, K., Shahi, G.K., Gaffney, D., Hale, S.A.: Research note: Tiplines to uncover misinformation on encrypted platforms: a case study of the 2019 Indian general election on whatsapp. Harvard Kennedy School Misinformation Review (2022)

    Google Scholar 

  43. Köhler, J., et al.: Overview of the CLEF-2022 CheckThat! lab task 3 on fake news detection. In: Working Notes of CLEF 2022–Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  44. Kovachevich, N.: BERT fine-tuning approach to CLEF CheckThat! fake news detection. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  45. Kumar, S., Kumar, G., Singh, S.R.: TextMinor at CheckThat! 2022: fake news article detection using RoBERT. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  46. La Barbera, D., Roitero, K., Mackenzie, J., Damiano, S., Demartini, G., Mizzaro, S.: BUM at CheckThat! 2022: a composite deep learning approach to fake news detection using evidence retrieval. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  47. Lomonaco, F., Donabauer, G., Siino, M.: COURAGE at CheckThat! 2022: harmful tweet detection using graph neural networks and ELECTRA. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  48. Ludwig, A., Felser, J., Xi, J., Labudde, D., Spranger, M.: FoSIL at CheckThat! 2022: using human behaviour-based optimization for text classification. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  49. Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B.J., Wong, K.F., Cha, M.: Detecting rumors from microblogs with recurrent neural networks. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 3818–3824 (2016)

    Google Scholar 

  50. Manan Suri, P.K., Dudeja, S.: Asatya at CheckThat! 2022: multimodal BERT for identifying claims in tweets. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  51. Mansour, W., Elsayed, T., Al-Ali, A.: Did i see it before? detecting previously- checked claims over twitter. In: European Conference on Information Retrieval. pp. 367–381 Springer (2022)

    Google Scholar 

  52. Martinez-Rico, J.R., Martinez-Romo, J., Araujo, L.: NLP &IRUNED at CheckThat! 2022: ensemble of classifiers for fake news detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  53. Meaney, J., Wilson, S., Chiruzzo, L., Lopez, A., Magdy, W.: Semeval 2021 task 7: hahackathon, detecting and rating humor and offense. In: Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pp. 105–119 (2021)

    Google Scholar 

  54. Michael Shliselberg, S.D.H.: RIET Lab at CheckThat! 2022: improving decoder based re-ranking for claim matching. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  55. Mihaylova, S., Borisova, I., Chemishanov, D., Hadzhitsanev, P., Hardalov, M., Nakov, P.: DIPS at CheckThat! 2021: verified claim retrieval. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  56. Mihaylova, T., Karadzhov, G., Atanasova, P., Baly, R., Mohtarami, M., Nakov, P.: SemEval-2019 task 8: Fact checking in community question answering forums. In: Proceedings of the 13th International Workshop on Semantic Evaluation, SemEval 2019, pp. 860–869 (2019)

    Google Scholar 

  57. Mingzhe, D., Sujatha Das Gollapalli, S.K.N.: NUS-IDS at CheckThat! 2022: identifying check-worthiness of tweets using CheckthaT5. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  58. Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., Cherry, C.: SemEval-2016 task 6: Detecting stance in tweets. In: Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval 2016, pp. 31–41 (2016)

    Google Scholar 

  59. Nakamura, K., Levy, S., Wang, W.Y.: r/fakeddit: a new multimodal benchmark dataset for fine-grained fake news detection. arXiv preprint arXiv:1911.03854 (2019)

  60. Nakov, P., et al.: Overview of the CLEF-2022 CheckThat! lab task 1 on identifying relevant claims in tweets. In: Working Notes of CLEF 2022–Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  61. Nakov, P., et al.: The CLEF-2022 CheckThat! Lab on fighting the covid-19 infodemic and fake news detection. In: Hagen, M., et al. (eds.) Advances in Information Retrieval, pp. 416–428. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99739-7_52

    Chapter  Google Scholar 

  62. Nakov, P., et al.: Overview of the CLEF-2018 lab on automatic identification and verification of claims in political debates. In: Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum, CLEF 2018 (2018)

    Google Scholar 

  63. Nakov, P., et al.: Automated fact-checking for assisting human fact-checkers. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021, pp. 4551–4558 (2021)

    Google Scholar 

  64. Nakov, P., Da San Martino, G., Alam, F., Shaar, S., Mubarak, H., Babulkov, N.: Overview of the CLEF-2022 CheckThat! lab task 2 on detecting previously fact-checked claims. In: Working Notes of CLEF 2022–Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  65. Nakov, P., et al.: The CLEF-2021 CheckThat! lab on detecting check-worthy claims, previously fact-checked claims, and fake news. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12657, pp. 639–649. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72240-1_75

    Chapter  Google Scholar 

  66. Nakov, P., et al.: Overview of the CLEF–2021 CheckThat! lab on detecting check-worthy claims, previously fact-checked claims, and fake news. In: Candan, S., et al. (eds.) CLEF 2021. LNCS, vol. 12880, pp. 264–291. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85251-1_19

    Chapter  Google Scholar 

  67. Nakov, P., et al.: SemEval-2016 Task 3: community question answering. In: Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval 2015, pp. 525–545 (2016)

    Google Scholar 

  68. Nguyen, V.H., Sugiyama, K., Nakov, P., Kan, M.Y.: FANG: leveraging social context for fake news detection using graph representation. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM 2020, pp. 1165–1174 (2020)

    Google Scholar 

  69. Oshikawa, R., Qian, J., Wang, W.Y.: A survey on natural language processing for fake news detection. In: Proceedings of the 12th Language Resources and Evaluation Conference, LREC 2020, pp. 6086–6093 (2020)

    Google Scholar 

  70. Pavlopoulos, J., Sorensen, J., Laugier, L., Androutsopoulos, I.: Semeval-2021 task 5: toxic spans detection. In: Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pp. 59–69 (2021)

    Google Scholar 

  71. Pires, T., Schlinger, E., Garrette, D.: How Multilingual is Multilingual BERT. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), Florence, Italy, pp. 4996–5001 (2019). https://doi.org/10.18653/v1/P19-1493

  72. Pogorelov, K., et al.: FakeNews: corona virus and 5G conspiracy task at MediaEval 2020. In: Proceedings of the MediaEval 2020 Workshop, MediaEval 2020 (2020)

    Google Scholar 

  73. Popat, K., Mukherjee, S., Strötgen, J., Weikum, G.: Credibility assessment of textual claims on the web. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM 2016, pp. 2173–2178 (2016)

    Google Scholar 

  74. Pritzkau, A.: NLytics at CheckThat! 2021: check-worthiness estimation as a regression problem on transformers. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  75. Pritzkau, A., Blanc, O., Geierhos, M., Schade, U.: NLytics at CheckThat! 2022: hierarchical multi-class fake news detection of news articles exploiting the topic structure. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  76. Röchert, D., Shahi, G.K., Neubaum, G., Ross, B., Stieglitz, S.: The networked context of covid-19 misinformation: informational homogeneity on youtube at the beginning of the pandemic. Online Social Netw. Media 26, 100164 (2021)

    Article  Google Scholar 

  77. Savchev, A.: AI Rational at CheckThat! 2022: using transformer models for tweet classification. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  78. Schütz, M., et al.: AIT FHSTP at CheckThat! 2022: cross-lingual fake news detection with a large pre-trained transformer. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  79. Schütz, M., Siegel, M.: Baseline for clef2022 - checkthat! lab task 3 (2022). https://doi.org/10.5281/zenodo.6362498

  80. Sepúlveda-Torres, R., Saquete, E.: GPLSI team at CLEF CheckThat! 2021: fine-tuning BETO and RoBERTa. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  81. Shaar, S., Alam, F., Da San Martino, G., Nakov, P.: The role of context in detecting previously fact-checked claims. Arxiv:2104.07423 (2021)

  82. Shaar, S., Alam, F., Martino, G.D.S., Nakov, P.: Assisting the human fact-checkers: detecting all previously fact-checked claims in a document. arXiv preprint arXiv:2109.07410 (2021)

  83. Shaar, S., Babulkov, N., Da San Martino, G., Nakov, P.: That is a known lie: Detecting previously fact-checked claims. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, pp. 3607–3618 (2020)

    Google Scholar 

  84. Shaar, S., et al.: Overview of the CLEF-2021 CheckThat! lab task 2 on detecting previously fact-checked claims in tweets and political debates. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  85. Shaar, S., et al.: Overview of the CLEF-2021 CheckThat! lab task 1 on check-worthiness estimation in tweets and political debates. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  86. Shahi, G.K.: AMUSED: an annotation framework of multi-modal social media data. arXiv:2010.00502 (2020)

  87. Shahi, G.K., Dirkson, A., Majchrzak, T.A.: An exploratory study of COVID-19 misinformation on Twitter. Online Social Netw. Media 22, 100104 (2021)

    Article  Google Scholar 

  88. Shahi, G.K., Struß, J.M., Mandl, T.: Overview of the CLEF-2021 CheckThat! lab: Task 3 on fake news detection. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  89. Taboubi, B., Nessir, M.A.B., Haddad, H.: iCompass at CheckThat! 2022: combining deep language models for fake news detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  90. Tarannum, P., Md. Arid, H., Alam, F., Noori, S.R.H.: Z-Index at CheckThat! Lab 2022: check-worthiness identification on tweet text. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  91. Tchechmedjiev, A., et al.: ClaimsKG: a knowledge graph of fact-checked claims. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 309–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_20

    Chapter  Google Scholar 

  92. Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: FEVER: a large-scale dataset for fact extraction and VERification. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2018, pp. 809–819 (2018)

    Google Scholar 

  93. Toraman, C., Ozcelik, O., Şahinuç, F., Sahin, U.: ARC-NLP at CheckThat! 2022: contradiction for harmful tweet detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  94. Tran, H.N., Kruschwitz, U.: ur-iw-hnt at CheckThat! 2022: cross-lingual text summarization for fake news detection. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  95. Truică C.O., Apostol, E.S., Paschke, A.: Awakened at CheckThat! 2022: fake news detection using BiLSTM and sentence transformer. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CLEF 2022, Bologna, Italy (2022)

    Google Scholar 

  96. Varma, H., Jain, A., Ratadiya, P., Rathi, A.: Attestable at semeval-2021 task 9: extending statement verification with tables for unknown class, and semantic evidence finding. In: Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pp. 1276–1282 (2021)

    Google Scholar 

  97. Vasileva, S., Atanasova, P., Màrquez, L., Barrón-Cedeño, A., Nakov, P.: It takes nine to smell a rat: neural multi-task learning for check-worthiness prediction. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing, RANLP 2019, pp. 1229–1239 (2019)

    Google Scholar 

  98. Wang, N.X., Mahajan, D., Danilevsky, M., Rosenthal, S.: Semeval-2021 task 9: fact verification and evidence finding for tabular data in scientific documents (sem-tab-facts). In: Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pp. 317–326 (2021)

    Google Scholar 

  99. Williams, E., Rodrigues, P., Tran, S.: Accenture at CheckThat! 2021: interesting claim identification and ranking with contextually sensitive lexical training data augmentation. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  100. Yasser, K., Kutlu, M., Elsayed, T.: Re-ranking web search results for better fact-checking: a preliminary study. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1783–1786 (2018)

    Google Scholar 

  101. Zhou, X., Wu, B., Fung, P.: Fight for 4230 at CLEF CheckThat! 2021: domain-specific preprocessing and pretrained model for ranking claims by check-worthiness. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  102. Zubiaga, A., Liakata, M., Procter, R., Hoi, G.W.S., Tolmie, P.: Analysing how people orient to and spread rumours in social media by looking at conversational threads. PLoS ONE 11(3), e0150989 (2016)

    Google Scholar 

Download references

Acknowledgments

Part of this research is carried out under the Tanbih mega-project, developed at the Qatar Computing Research Institute, HBKU, which aims to limit the impact of “fake news”, propaganda, and media bias, thus promoting digital literacy and critical thinking.

Part of this work has been funded by the German Federal Ministry of Education and Research (BMBF) under the grant no. 01FP20031J. The responsibility for the contents of this publication lies with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preslav Nakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nakov, P. et al. (2022). Overview of the CLEF–2022 CheckThat! Lab on Fighting the COVID-19 Infodemic and Fake News Detection. In: Barrón-Cedeño, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2022. Lecture Notes in Computer Science, vol 13390. Springer, Cham. https://doi.org/10.1007/978-3-031-13643-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13643-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13642-9

  • Online ISBN: 978-3-031-13643-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics