Skip to main content

Modeling the Association Between Prenatal Exposure to Mercury and Neurodevelopment of Children

  • Conference paper
  • First Online:
ICT Innovations 2021. Digital Transformation (ICT Innovations 2021)

Abstract

This work presents an application of machine learning methods in the area of environmental epidemiology. We have used lifestyle and exposure data from 769 mother-child pairs from Slovenia and Croatia to predict the neurodevelopment of the children, expressed through five Bayley-III test scores. We have applied single- and multi-target (semi-)supervised predictive methods to build models capable of predicting the Bayley-III scores. Additionally, we have used feature ranking methods to estimate the importance of individual lifestyle and mercury exposure attributes on the Bayley-III test scores. The learned models offer useful insights into the effect of prenatal mercury exposure on the neural development of children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    CLUS software is available for download at http://source.ijs.si/ktclus/clus-public.

References

  1. Barbone, F., et al.: Prenatal mercury exposure and child neurodevelopment outcomes at 18 months: results from the Mediterranean Phime cohort. Int. J. Hyg. Environ. Health 222(1), 9–21 (2019). https://doi.org/10.1016/j.ijheh.2018.07.011

  2. Logsdon, A.: Bayley Scales of Infant and Toddler Development. 3rd edn (2008). http://images.pearsonclinical.com/images/pdf/bayley-iii_webinar.pdf, last accessed 07.09.2020

  3. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 55–63 (1998)

    Google Scholar 

  4. Breskvar, M., Zenko, B., Džeroski, S.: Relating biological and clinical features of Alzheimer’s patients with predictive clustering trees. In: International Multi-Conference Information Society (2015)

    Google Scholar 

  5. Kim, K.H., Kabir, E., Jahan, S.A.: A review on the distribution of hg in the environment and its human health impacts. J. Hazard. Mater. 306, 376–385 (2016). https://doi.org/10.1016/j.jhazmat.2015.11.031

    Article  Google Scholar 

  6. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recogn. 46(3), 817–833 (2013)

    Article  Google Scholar 

  7. Levatić, J., Kocev, D., Ceci, M., Džeroski, S.: Semi-supervised trees for multi-target regression. Inf. Sci. 450, 109–127 (2018). https://doi.org/10.1016/j.ins.2018.03.033

    Article  MathSciNet  Google Scholar 

  8. Petković, M., Kocev, D., Džeroski, S.: Feature ranking for multi-target regression. Mach. Learn. 109(6), 1179–1204 (2019). https://doi.org/10.1007/s10994-019-05829-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Prpic, I., et al.: Prenatal exposure to low-level methyl mercury alters the child’s fine motor skills at the age of 18 months. Environ. Res. 152 (2016). https://doi.org/10.1016/j.envres.2016.10.011

  10. Quinlan, J.R.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, pp. 343–348. World Scientific (1992)

    Google Scholar 

  11. Snoj Tratnik, J., et al.: Prenatal mercury exposure, neurodevelopment and apolipoprotein e genetic polymorphism. Environ. Res. 152, 375–385 (2017). https://doi.org/10.1016/j.envres.2016.08.035

    Article  Google Scholar 

  12. Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression trees. In: International Workshop on Knowledge Discovery in Inductive Databases, pp. 222–233. Springer, Berlin (2005). https://doi.org/10.1007/978-3-540-75549-4

  13. Trdin, A., et al.: Mercury speciation in prenatal exposure in Slovenian and Croatian population - Phime study. Environ. Res. 177, 108627 (2019). https://doi.org/10.1016/j.envres.2019.108627, https://www.sciencedirect.com/science/article/pii/S0013935119304244

  14. Valmarska, A., Miljkovic, D., Konitsiotis, S., Gatsios, D., Lavrac, N., Robnik-Sikonja, M.: Combining multitask learning and short time series analysis in Parkinson’s disease patients stratification. In: Conference on Artificial Medicine in Europe, pp. 116–125, May 2017. https://doi.org/10.1007/978-3-319-59758-4_13

  15. Zajc, J., et al.: Chaophilic or chaotolerant fungi: a new category of extremophiles? Front. Microbiol. 5 (2014)

    Google Scholar 

  16. Ženko, B.: Learning predictive clustering rules. Ph.D. thesis, University of Ljubljana (2007), http://eprints.fri.uni-lj.si/709/1/zenko%2Dphd%2Dthesis.pdf

Download references

Acknowledgements

SP would like to acknowledge the financial support in the form of a scholarship of the Public Scholarship, Development, Disability and Maintenance Fund of the Republic of Slovenia. SD, MB and SP would like to acknowledge the grant number P2-0103 (the research programme Knowledge Technologies). All authors acknowledge the NEURODYS project (J7-9400, Neuropsychological dysfunctions caused by low level exposure to selected environmental pollutants in susceptible population) for financial support of the overall work. JST, DM and MH also acknowledge the EU funded 6th FP project PHIME for providing the data used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Popov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popov, S., Tratnik, J.S., Breskvar, M., Mazej, D., Horvat, M., Džeroski, S. (2022). Modeling the Association Between Prenatal Exposure to Mercury and Neurodevelopment of Children. In: Antovski, L., Armenski, G. (eds) ICT Innovations 2021. Digital Transformation. ICT Innovations 2021. Communications in Computer and Information Science, vol 1521. Springer, Cham. https://doi.org/10.1007/978-3-031-04206-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04206-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04205-8

  • Online ISBN: 978-3-031-04206-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics