Abstract
The process of industrial design engineering is often involved with the simultaneous optimization of multiple expensive objectives. The surrogate assisted multi-objective S-Metric Selection – Efficient Global Optimization (SMS-EGO) algorithm is one of the most popular algorithms to solve these kind of problems. We propose an extension of the SMS-EGO algorithm with optimally weighted, linearly combined ensembles of regression models to improve its objective modelling capabilities. Multiple (different) surrogates are combined into one optimally weighted ensemble per objective using a model agnostic uncertainty quantification method to balance between exploration and exploitation. The performance of the proposed algorithm is evaluated on a diverse set of benchmark problems with a small initial sample and an additional budget of 25 evaluations of the real objective functions. The results show that the proposed Ensemble-based – S-Metric Selection – Efficient Global Optimization (E-SMS-EGO) algorithm outperforms the state-of-the-art algorithms in terms of efficiency, robustness and spread across the objective space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acar, E.: Various approaches for constructing an ensemble of metamodels using local measures. Struct. Multi. Optim. 42, 879–896 (2010). https://doi.org/10.1007/s00158-010-0520-z
Acar, E., Rais-Rohani, M.: Ensemble of metamodels with optimized weight factors. Struct. Multi. Optim. 37, 279–294 (2008). https://doi.org/10.1007/s00158-008-0230-y
Allmendinger, R., Emmerich, M., Hakanen, J., Jin, Y., Rigoni, E.: Surrogate-assisted multicriteria optimization: complexities, prospective solutions, and business case. J. Multi-Criteria Decis. Anal. 24, 5–24 (2016). https://doi.org/10.1002/mcda.1605
Azzouz, N., Bechikh, S., Ben Said, L.: Steady state ibea assisted by MLP neural networks for expensive multi-objective optimization problems. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 581–588. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2576768.2598271
Bandaru, S., Ng, A.H.C., Deb, K.: On the performance of classification algorithms for learning pareto-dominance relations. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1139–1146 (2014). https://doi.org/10.1109/CEC.2014.6900641
Blank, J., Deb, K.: Pymoo: multi-objective optimization in python. IEEE Access 8, 89497–89509 (2020)
Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation, Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-36797-2
Cox, D.D., John, S.: Sdo: a statistical method for global optimization. In: Multidisciplinary Design Optimization: State-of-the-Art, pp. 315–329 (1997)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, New York, January 2001
Deb, K., Pratap, A., Meyarivan, T.: Constrained test problems for multi-objective evolutionary optimization. vol. 1993, pp. 284–298, March 2001. https://doi.org/10.1007/3-540-44719-9_20
Ehrgott, M.: Vilfredo Pareto and multi-objective optimization, pp. 447–453. Documenta mathematica (2012)
Fletcher, C.A.J.: Computational Fluid Dynamics: An Introduction. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-97035-1_1
Friese, M., Bartz-Beielstein, T., Emmerich, M.: Building ensembles of surrogates by optimal convex combination. In: Bioinspired Optimization Methods and their Applications, pp. 131–143, May 2016
Goel, T., Haftka, R., Shyy, W., Queipo, N.: Ensemble of surrogates. Struct. Multi. Optim. 33, 199–216 (2007). https://doi.org/10.1007/s00158-006-0051-9
Gong, W., Cai, Z., Zhu, L.: An efficient multiobjective differential evolution algorithm for engineering design. Struct. Multi. Optim. 38, 137–157 (2009). https://doi.org/10.1007/s00158-008-0269-9
Horn, D., Wagner, T., Biermann, D., Weihs, C., Bischl, B.: Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 64–78. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_5
Jiang, P., Zhou, Q., Shao, X.: Surrogate-model-based design and optimization, January 2020. https://doi.org/10.1007/978-981-15-0731-1_7
Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492 (1998). https://doi.org/10.1023/A:1008306431147
Knowles, J.: Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)
Krige, D.: A statistical approach to some basic mine valuation problems on the witwatersrand. J. South. Afr. Inst. Min. Metall. 52(9), 201–203 (1952). https://doi.org/10.10520/AJA0038223X_4858
Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029752
Li, K., Chen, R., Fu, G., Yao, X.: Two-archive evolutionary algorithm for constrained multiobjective optimization. IEEE Trans. Evol. Comput. 23(2), 303–315 (2019)
Loshchilov, I., Schoenauer, M., Sebag, M.: Comparison-based optimizers need comparison-based surrogates. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 364–373. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_37
Mckay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting vales of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979). https://doi.org/10.1080/00401706.1979.10489755
Miettinen, K., Mäkelä, M.: On scalarizing functions in multiobjective optimization. OR Spectrum 24, 193–213 (2002). https://doi.org/10.1007/s00291-001-0092-9
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted \(\cal{S}\)-metric selection. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 784–794. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_78
Shi, R., Liu, L., Long, T., Liu, J.: An efficient ensemble of radial basis functions method based on quadratic programming. Eng. Optim. 48(7), 1202–1225 (2016). https://doi.org/10.1080/0305215X.2015.1100470
van Stein, B., Wang, H., Kowalczyk, W., Bäck, T.: A novel uncertainty quantification method for efficient global optimization. In: Medina, J., Ojeda-Aciego, M., Verdegay, J.L., Perfilieva, I., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2018. CCIS, vol. 855, pp. 480–491. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91479-4_40
Szabó, B., Babuška, I.: Introduction to Finite Element Analysis: Formulation, Verification and Validation. Wiley Series in Computational Mechanics, Wiley (2011). https://books.google.nl/books?id=bbi7cQAACAAJ
Ulmer, H., Streichert, F., Zell, A.: Evolution strategies assisted by gaussian processes with improved preselection criterion. In: The 2003 Congress on Evolutionary Computation, 2003, CEC 2003. vol. 1, pp. 692–699(2003). https://doi.org/10.1109/CEC.2003.1299643
Viana, F., Haftka, R., Steffen, Jr, V.: Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct. Multi. Optim. 39, 439–457 (2009). https://doi.org/10.1007/s00158-008-0338-0
Wagner, T.: Planning and Multi-Objective Optimization of Manufacturing Processes by Means of Empirical Surrogate Models. Vulkan Verlag, Essen (2013)
Ye, P.: A review on surrogate-based global optimization methods for computationally expensive functions. Softw. Eng. 7, 68–84 (2019)
Ye, P., Pan, G.: Global optimization method using ensemble of metamodels based on fuzzy clustering for design space reduction. Eng. Comput. 33(3), 573–585 (2016). https://doi.org/10.1007/s00366-016-0490-x
Zhang, J., Chowdhury, S., Messac, A.: An adaptive hybrid surrogate model. Struct. Multidiscip. Optim. 46(2), 223–238 (2012). https://doi.org/10.1007/s00158-012-0764-x
Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by moea/d with gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Hanse, G., de Winter, R., van Stein, B., Bäck, T. (2022). Optimally Weighted Ensembles for Efficient Multi-objective Optimization. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13163. Springer, Cham. https://doi.org/10.1007/978-3-030-95467-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-95467-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95466-6
Online ISBN: 978-3-030-95467-3
eBook Packages: Computer ScienceComputer Science (R0)