Skip to main content

AFLLC: A Novel Active Contour Model Based on Adaptive Fractional Order Differentiation and Local-Linearly Constrained Bias Field

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13110))

Included in the following conference series:

  • 1791 Accesses

Abstract

In this work, we propose a novel active contour model based on adaptive fractional order differentiation and the local-linearly constrained bias field for coping with images caused by complex intensity inhomogeneity and noise. First, according to the differentiation properties of Fourier transform, we employ the Fourier transform and the Inverse Fourier transform to obtain a global nonlinear boundary enhancement image. In order to overcome the difficulty of setting the optimal order manually, an adaptive selection strategy of the order of fractional differentiation is presented by normalizing the average gradient amplitude. Then, according to the image model, the energy functional is constructed in terms of the level set by taking the fractional differentiation image as the guiding image. In energy functional, local linear functions are used to describe the bias field and construct the local region descriptor since they can flexibly deal with local intensity variety and ensure the overall data fitting. Finally, experimental results demonstrate our proposed model achieves encouraging performance compared with state-of-the-art methods on two datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, H., Rada, L., Badshah, N.: Image segmentation for intensity inhomogeneity in presence of high noise. IEEE Trans. Image Process. 27(8), 3729–3738 (2018)

    Article  MathSciNet  Google Scholar 

  2. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  3. Chen, B., Huang, S., Liang, Z., Chen, W., Pan, B.: A fractional order derivative based active contour model for inhomogeneous image segmentation. Appl. Math. Model. 65, 120–136 (2019)

    Article  MathSciNet  Google Scholar 

  4. Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11632–11640 (2019)

    Google Scholar 

  5. Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Pike, G.B., Evans, A.C.: BrainWeb: olnline interface to a 3D MRI simulated brain database. In: NeuroImage. Citeseer (1997)

    Google Scholar 

  6. Gupta, D., Anand, R.: A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Signal Process. Control 31, 116–126 (2017)

    Article  Google Scholar 

  7. Li, C., Gore, J.C., Davatzikos, C.: Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn. Reson. Imaging 32(7), 913–923 (2014)

    Article  Google Scholar 

  8. Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)

    Article  MathSciNet  Google Scholar 

  9. Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7. IEEE (2007)

    Google Scholar 

  10. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)

    Article  MathSciNet  Google Scholar 

  11. Li, M.M., Li, B.Z.: A novel active contour model for noisy image segmentation based on adaptive fractional order differentiation. IEEE Trans. Image Process. 29, 9520–9531 (2020)

    Article  MathSciNet  Google Scholar 

  12. Min, H., Jia, W., Zhao, Y., Zuo, W., Ling, H., Luo, Y.: LATE: a level-set method based on local approximation of Taylor expansion for segmenting intensity inhomogeneous images. IEEE Trans. Image Process. 27(10), 5016–5031 (2018)

    Article  MathSciNet  Google Scholar 

  13. Min, Y., Xiao, B., Dang, J., Yue, B., Cheng, T.: Real time detection system for rail surface defects based on machine vision. EURASIP J. Image Video Process. 2018(1), 1–11 (2018). https://doi.org/10.1186/s13640-017-0241-y

    Article  Google Scholar 

  14. Niu, S., Chen, Q., De Sisternes, L., Ji, Z., Zhou, Z., Rubin, D.L.: Robust noise region-based active contour model via local similarity factor for image segmentation. Pattern Recogn. 61, 104–119 (2017)

    Article  Google Scholar 

  15. Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001)

    Article  MathSciNet  Google Scholar 

  16. Wang, L., Pan, C.: Robust level set image segmentation via a local correntropy-based K-means clustering. Pattern Recogn. 47(5), 1917–1925 (2014)

    Article  Google Scholar 

  17. Xing, R., Niu, S., Gao, X., Liu, T., Fan, W., Chen, Y.: Weakly supervised serous retinal detachment segmentation in SD-OCT images by two-stage learning. Biomed. Opt. Express 12(4), 2312–2327 (2021)

    Article  Google Scholar 

  18. Zhu, G., Zhang, S., Zeng, Q., Wang, C.: Boundary-based image segmentation using binary level set method. Opt. Eng. 46(5), 050501 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61701192, No. 61872419, No.61873324, the Natural Science Foundation of Shandong Province, China, under Grant No. ZR2020QF107, No. ZR2020MF137, No. ZR2019MF040, ZR2019MH106, No. ZR2018BF023, the China Postdoctoral Science Foundation under Grants No. 2017M612178. University Innovation Team Project of Jinan (2019GXRC015), Key Science & Technology Innovation Project of Shandong Province (2019JZZY010324, 2019JZZY010448), and the Higher Educational Science and Technology Program of Jinan City under Grant with No. 2020GXRC057. The National Key Research and Development Program of China (No. 2016YFC13055004).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, Y., Dong, J., Li, F., Li, X., Gao, X., Niu, S. (2021). AFLLC: A Novel Active Contour Model Based on Adaptive Fractional Order Differentiation and Local-Linearly Constrained Bias Field. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics