Skip to main content

Causal Inference for Influence Propagation—Identifiability of the Independent Cascade Model

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13116))

Included in the following conference series:

Abstract

Independent cascade (IC) model is a widely used influence propagation model for social networks. In this paper, we incorporate the concept and techniques from causal inference to study the identifiability of parameters from observational data in extended IC model with unobserved confounding factors, which models more realistic propagation scenarios but is rarely studied in influence propagation modeling before. We provide the conditions for the identifiability or unidentifiability of parameters for several special structures including the Markovian IC model, semi-Markovian IC model, and IC model with a global unobserved variable. Parameter identifiability is important for other tasks such as influence maximization under the diffusion networks with unobserved confounding factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrahao, B., Chierichetti, F., Kleinberg, R., Panconesi, A.: Trace complexity of network inference. arXiv e-prints, pp. arXiv-1308 (2013)

    Google Scholar 

  2. Chen, W., Lakshmanan, L.V., Castillo, C.: Information and Influence Propagation in Social Networks. Morgan & Claypool Publishers (2013)

    Google Scholar 

  3. Daneshmand, H., Gomez-Rodriguez, M., Song, L., Schölkopf, B.: Estimating diffusion network structures: recovery conditions, sample complexity & soft-thresholding algorithm. In: ICML (2014)

    Google Scholar 

  4. Drton, M., Foygel, R., Sullivant, S.: Global identifiability of linear structural equation models. Ann. Stat. 39(2), 865–886 (2011)

    Article  MathSciNet  Google Scholar 

  5. Du, N., Liang, Y., Balcan, M., Song, L.: Influence function learning in information diffusion networks. In: ICML 2014, Beijing, China, 21–26 June 2014 (2014)

    Google Scholar 

  6. Du, N., Song, L., Gomez-Rodriguez, M., Zha, H.: Scalable influence estimation in continuous-time diffusion networks. In: NIPS 2013, Lake Tahoe, Nevada, United States, 5–8 December 2013, pp. 3147–3155 (2013)

    Google Scholar 

  7. Du, N., Song, L., Smola, A.J., Yuan, M.: Learning networks of heterogeneous influence. In: NIPS 2012, Lake Tahoe, Nevada, United States, 3–6 December 2012, pp. 2789–2797 (2012)

    Google Scholar 

  8. Feng, S., Chen, W.: Causal inference for influence propagation - identifiability of the independent cascade model. CoRR abs/2107.04224 (2021). https://arxiv.org/abs/2107.04224

  9. Foygel, R., Draisma, J., Drton, M.: Half-trek criterion for generic identifiability of linear structural equation models. Ann. Stat. 1682–1713 (2012)

    Google Scholar 

  10. Gomez-Rodriguez, M., Balduzzi, D., Schölkopf, B.: Uncovering the temporal dynamics of diffusion networks. arXiv preprint arXiv:1105.0697 (2011)

  11. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: KDD 2010 (2010)

    Google Scholar 

  12. Goyal, A., Bonchi, F., Lakshmanan, L.V., Venkatasubramanian, S.: On minimizing budget and time in influence propagation over social networks. Soc. Netw. Anal. Min. 3(2), 179–192 (2013)

    Article  Google Scholar 

  13. He, X., Xu, K., Kempe, D., Liu, Y.: Learning influence functions from incomplete observations. arXiv e-prints, pp. arXiv-1611 (2016)

    Google Scholar 

  14. Huang, Y., Valtorta, M.: Identifiability in causal Bayesian networks: a sound and complete algorithm. In: AAAI, pp. 1149–1154 (2006)

    Google Scholar 

  15. Huang, Y., Valtorta, M.: Pearl’s calculus of intervention is complete. arXiv preprint arXiv:1206.6831 (2012)

  16. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD (2003)

    Google Scholar 

  17. Myers, S.A., Leskovec, J.: On the convexity of latent social network inference. arXiv e-prints, pp. arXiv-1010 (2010)

    Google Scholar 

  18. Narasimhan, H., Parkes, D.C., Singer, Y.: Learnability of influence in networks. In: Proceedings of the 29th Annual Conference on Neural Information Processing Systems (2015)

    Google Scholar 

  19. Netrapalli, P., Sanghavi, S.: Finding the graph of epidemic cascades. arXiv preprint arXiv:1202.1779 (2012)

  20. Pearl, J.: Causality, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  21. Pouget-Abadie, J., Horel, T.: Inferring graphs from cascades: a sparse recovery framework. arXiv e-prints, pp. arXiv-1505 (2015)

    Google Scholar 

  22. Shpitser, I., Pearl, J.: Identification of joint interventional distributions in recursive semi-Markovian causal models. In: Proceedings of the 21st National Conference on Artificial Intelligence, pp. 1219–1226 (2006)

    Google Scholar 

  23. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1539–1554 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, S., Chen, W. (2021). Causal Inference for Influence Propagation—Identifiability of the Independent Cascade Model. In: Mohaisen, D., Jin, R. (eds) Computational Data and Social Networks. CSoNet 2021. Lecture Notes in Computer Science(), vol 13116. Springer, Cham. https://doi.org/10.1007/978-3-030-91434-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91434-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91433-2

  • Online ISBN: 978-3-030-91434-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics