Abstract
The number of attacks aimed at compromising smartphones in general, and Android devices in particular, is acknowledged as one of the main security concerns of these devices. Accordingly, a great effort has been devoted in recent years to deal with such incidents. However, scant attention has been paid to study the application of different visualization techniques for the analysis of malware. To bridge this gap, the present paper proposes the application of a novel technique called Hybrid Unsupervised Exploratory Plots (HUEPs) for the visualization of an Android malware dataset. Thanks to the advanced 3D visualization that is obtained, the proposed solution provides with an overview of the structure of the malware families, supporting the analysis of their internal organization. Experimentation has been carried out with the popular Android Malware Genome (Malgenome) dataset, obtaining promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Statista - The Statistics Portal. http://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/. Accessed 21 May 2021
AppBrain Stats. http://www.appbrain.com/stats/stats-index. Accessed 20 May 2021
Micro, T.: The Fine Line: 2016 Trend Micro Security Predictions (2015)
Android Security: Click Fraud Apps Drove 100% Malware Increase in Google Play for 2018. https://www.trendmicro.com/vinfo/us/security/news/mobile-safety/android-security-click-fraud-apps-drove-100-malware-increase-in-google-play-for-2018. Accessed 20 May 2021
Yajin, Z., Xuxian, J.: Dissecting android malware: characterization and evolution. In: 2012 IEEE Symposium on Security and Privacy, pp. 95–109 (2012)
Malgenome Project. http://www.malgenomeproject.org/. Accessed 20 May 2021
Corchado, E., Herrero, Á.: Neural visualization of network traffic data for intrusion detection. Appl. Soft Comput. 11, 2042–2056 (2011)
Sánchez, R., Herrero, Á., Corchado, E.: Visualization and clustering for SNMP intrusion detection. Cybern. Syst. Int. J. 44, 505–532 (2013)
Pinzón, C.I., De Paz, J.F., Herrero, Á., Corchado, E., Bajo, J., Corchado, J.M.: idMAS-SQL: intrusion detection based on MAS to detect and block SQL injection through data mining. Inf. Sci. 231, 15–31 (2013)
Zurutuza, U., Ezpeleta, E., Herrero, Á., Corchado, E.: Visualization of misuse-based intrusion detection: application to honeynet data. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds.) Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011, pp. 561–570. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19644-7_59
Razgallah, A., Khoury, R., Hallé, S., Khanmohammadi, K.: A survey of malware detection in android apps: recommendations and perspectives for future research. Comput. Sci. Rev. 39, 100358 (2021)
Cen, L., Gates, C.S., Si, L., Li, N.: A probabilistic discriminative model for android malware detection with decompiled source code. IEEE Trans. Depend. Secur. Comput. 12, 400–412 (2015)
Sanz, B., et al.: MAMA: manifest analysis for malware detection in android. Cybern. Syst. 44, 469–488 (2013)
Teufl, P., Ferk, M., Fitzek, A., Hein, D., Kraxberger, S., Orthacker, C.: Malware detection by applying knowledge discovery processes to application metadata on the android market (Google Play). Secur. Commun. Netw. 9, 389–419 (2016)
Jang, J.-W., Yun, J., Mohaisen, A., Woo, J., Kim, H.K.: Detecting and classifying method based on similarity matching of android malware behavior with profile. Springerplus 5, 1–23 (2016)
Zhao, J., Masood, R., Seneviratne, S.: A Review of Computer Vision Methods in Network Security. IEEE Communications Surveys & Tutorials, pp. 1–1 (2021)
Herrero, Á., Corchado, E., Sáiz, J.M.: MOVICAB-IDS: visual analysis of network traffic data streams for intrusion detection. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1424–1433. Springer, Heidelberg (2006). https://doi.org/10.1007/11875581_169
Wagner, M., et al.: A survey of visualization systems for malware analysis. In: EG Conference on Visualization (EuroVis)-STARs, pp. 105–125 (2015)
Paturi, A., Cherukuri, M., Donahue, J., Mukkamala, S.: Mobile malware visual analytics and similarities of attack toolkits (malware gene analysis). In: Collaboration Technologies and Systems (CTS), 2013 International Conference on, pp. 149–154 (2013)
Park, W., Lee, K.H., Cho, K.S., Ryu, W.: Analyzing and detecting method of android malware via disassembling and visualization. In: 2014 International Conference on Information and Communication Technology Convergence (ICTC), pp. 817–818 (2014)
Moonsamy, V., Rong, J., Liu, S.: Mining permission patterns for contrasting clean and malicious android applications. Futur. Gener. Comput. Syst. 36, 122–132 (2014)
Somarriba, O., Zurutuza, U., Uribeetxeberria, R., Delosières, L., Nadjm-Tehrani, S.: Detection and visualization of android malware behavior. J. Electr. Comput. Eng. 2016, 1–17 (2016)
Zhang, Y., et al.: Visual analysis of android malware behavior profile based on $$PMCG_{droid}$$ : a pruned lightweight APP call graph. In: Lin, X., Ghorbani, A., Ren, K., Zhu, S. (eds.) Security and Privacy in Communication Networks: 13th International Conference, SecureComm 2017, Niagara Falls, ON, Canada, October 22–25, 2017, Proceedings, pp. 449–468. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-78813-5_23
Akarsh, S., Poornachandran, P., Menon, V.K., Soman, K.P.: A detailed investigation and analysis of deep learning architectures and visualization techniques for malware family identification. In: Hassanien, A.E., Elhoseny, M. (eds.) Cybersecurity and Secure Information Systems: Challenges and Solutions in Smart Environments, pp. 241–286. Springer International Publishing, Cham (2019)
González, A., Herrero, Á., Corchado, E.: Neural visualization of android malware families. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds.) SOCO/CISIS/ICEUTE -2016. AISC, vol. 527, pp. 574–583. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47364-2_56
Herrero, Á., Jiménez, A., Bayraktar, S.: Hybrid unsupervised exploratory plots: a case study of analysing foreign direct investment. Complexity 2019, 6271017 (2019)
Redondo, R., Herrero, Á., Corchado, E., Sedano, J.: A decision-making tool based on exploratory visualization for the automotive industry. Appl. Sci. 10, 4355 (2020)
Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–444 (1933)
Corchado, E., MacDonald, D., Fyfe, C.: Maximum and minimum likelihood Hebbian learning for exploratory projection pursuit. Data Min. Knowl. Disc. 8, 203–225 (2004)
Corchado, E., Fyfe, C.: Connectionist techniques for the identification and suppression of interfering underlying factors. Int. J. Pattern Recognit. Artif. Intell. 17, 1447–1466 (2003)
Macqueen, J.: Some methods for classification and analysis of multivariate observations. In: Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Basurto, N., Quintián, H., Urda, D., Calvo-Rolle, J.L., Herrero, Á., Corchado, E. (2022). Advanced 3D Visualization of Android Malware Families. In: Gude Prego, J.J., de la Puerta, J.G., García Bringas, P., Quintián, H., Corchado, E. (eds) 14th International Conference on Computational Intelligence in Security for Information Systems and 12th International Conference on European Transnational Educational (CISIS 2021 and ICEUTE 2021). CISIS - ICEUTE 2021. Advances in Intelligent Systems and Computing, vol 1400. Springer, Cham. https://doi.org/10.1007/978-3-030-87872-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-87872-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87871-9
Online ISBN: 978-3-030-87872-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)