Skip to main content

Quantized Gromov-Wasserstein

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12977))

  • 2268 Accesses

Abstract

The Gromov-Wasserstein (GW) framework adapts ideas from optimal transport to allow for the comparison of probability distributions defined on different metric spaces. Scalable computation of GW distances and associated matchings on graphs and point clouds have recently been made possible by state-of-the-art algorithms such as S-GWL and MREC. Each of these algorithmic breakthroughs relies on decomposing the underlying spaces into parts and performing matchings on these parts, adding recursion as needed. While very successful in practice, theoretical guarantees on such methods are limited. Inspired by recent advances in the theory of quantization for metric measure spaces, we define Quantized Gromov Wasserstein (qGW): a metric that treats parts as fundamental objects and fits into a hierarchy of theoretical upper bounds for the GW problem. This formulation motivates a new algorithm for approximating optimal GW matchings which yields algorithmic speedups and reductions in memory complexity. Consequently, we are able to go beyond outperforming state-of-the-art and apply GW matching at scales that are an order of magnitude larger than in the existing literature, including datasets containing over 1M points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/trneedham/QuantizedGromovWasserstein.

References

  1. Alvarez-Melis, D., Jaakkola, T.: Gromov-Wasserstein alignment of word embedding spaces. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1881–1890 (2018)

    Google Scholar 

  2. Armeni, I., et al.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1534–1543 (2016)

    Google Scholar 

  3. Blumberg, A.J., Carriere, M., Mandell, M.A., Rabadan, R., Villar, S.: MREC: a fast and versatile framework for aligning and matching point clouds with applications to single cell molecular data. arXiv preprint arXiv:2001.01666 (2020)

  4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  5. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. MCS, Springer, New York (2009). https://doi.org/10.1007/978-0-387-73301-2

    Book  MATH  Google Scholar 

  6. Bunne, C., Alvarez-Melis, D., Krause, A., Jegelka, S.: Learning generative models across incomparable spaces. In: International Conference on Machine Learning, pp. 851–861 (2019)

    Google Scholar 

  7. Chowdhury, S., Mémoli, F.: The Gromov-Wasserstein distance between networks and stable network invariants. Inf. Inference J. IMA 8(4), 757–787 (2019)

    MathSciNet  Google Scholar 

  8. Chowdhury, S., Needham, T.: Gromov-Wasserstein averaging in a Riemannian framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 842–843 (2020)

    Google Scholar 

  9. Chowdhury, S., Needham, T.: Generalized spectral clustering via Gromov-Wasserstein learning. In: International Conference on Artificial Intelligence and Statistics, pp. 712–720. PMLR (2021)

    Google Scholar 

  10. Demetci, P., Santorella, R., Sandstede, B., Noble, W.S., Singh, R.: Gromov-Wasserstein optimal transport to align single-cell multi-omics data. BioRxiv (2020)

    Google Scholar 

  11. Fatras, K., Zine, Y., Majewski, S., Flamary, R., Gribonval, R., Courty, N.: Minibatch optimal transport distances; analysis and applications. arXiv preprint arXiv:2101.01792 (2021)

  12. Flamary, R., Courty, N.: POT Python Optimal Transport library (2017). https://pythonot.github.io/

  13. Garg, V., Jaakkola, T.: Solving graph compression via optimal transport. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  14. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and function using NetworkX. Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2008)

    Google Scholar 

  15. Mémoli, F.: On the use of Gromov-Hausdorff distances for shape comparison. The Eurographics Association (2007)

    Google Scholar 

  16. Mémoli, F.: Gromov-Hausdorff distances in Euclidean spaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2008)

    Google Scholar 

  17. Mémoli, F.: Gromov-Wasserstein distances and the metric approach to object matching. Found. Comput. Math. 11(4), 417–487 (2011)

    Article  MathSciNet  Google Scholar 

  18. Mémoli, F., Needham, T.: Gromov-Monge quasi-metrics and distance distributions. arXiv preprint arXiv:1810.09646 (2018)

  19. Mémoli, F., Sapiro, G.: Comparing point clouds. In: SGP 2004: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry Processing, pp. 32–40. ACM, New York (2004). https://doi.org/http://doi.acm.org/10.1145/1057432.1057436

  20. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005)

    Article  MathSciNet  Google Scholar 

  21. Mémoli, F., Sidiropoulos, A., Singhal, K.: Sketching and clustering metric measure spaces. arXiv preprint arXiv:1801.00551 (2018)

  22. Mérigot, Q.: A multiscale approach to optimal transport. In: Computer Graphics Forum, vol. 30, pp. 1583–1592. Wiley Online Library (2011)

    Google Scholar 

  23. Papadakis, P.: The canonically posed 3D objects dataset. In: Eurographics Workshop on 3D Object Retrieval, pp. 33–36 (2014)

    Google Scholar 

  24. Parés, F., et al.: Fluid communities: a competitive, scalable and diverse community detection algorithm. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds.) COMPLEX NETWORKS 2017 2017. SCI, vol. 689, pp. 229–240. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72150-7_19

    Chapter  Google Scholar 

  25. Peyré, G., Cuturi, M., Solomon, J.: Gromov-Wasserstein averaging of kernel and distance matrices. In: International Conference on Machine Learning (2016)

    Google Scholar 

  26. Peyré, G., Cuturi, M., et al.: Computational optimal transport: with applications to data science. Found. Trends® Mach. Learn. 11(5–6), 355–607 (2019)

    Google Scholar 

  27. Sato, R., Cuturi, M., Yamada, M., Kashima, H.: Fast and robust comparison of probability measures in heterogeneous spaces. arXiv:2002.01615 (2020)

  28. Séjourné, T., Vialard, F.X., Peyré, G.: The unbalanced Gromov Wasserstein distance: conic formulation and relaxation. arXiv preprint arXiv:2009.04266 (2020)

  29. Solomon, J., Peyré, G., Kim, V.G., Sra, S.: Entropic metric alignment for correspondence problems. ACM Trans. Graph. (TOG) 35(4), 1–13 (2016)

    Article  Google Scholar 

  30. Sturm, K.T.: The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces. arXiv preprint arXiv:1208.0434 (2012)

  31. Sturm, K.T., et al.: On the geometry of metric measure spaces. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  Google Scholar 

  32. Vayer, T., Courty, N., Tavenard, R., Flamary, R.: Optimal transport for structured data with application on graphs. In: International Conference on Machine Learning, pp. 6275–6284 (2019)

    Google Scholar 

  33. Vayer, T., Flamary, R., Tavenard, R., Chapel, L., Courty, N.: Sliced Gromov-Wasserstein. In: NeurIPS 2019-Thirty-third Conference on Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  34. Villani, C.: Topics in optimal transportation. American Mathematical Soc. (2003)

    Google Scholar 

  35. Weitkamp, C.A., Proksch, K., Tameling, C., Munk, A.: Gromov-Wasserstein distance based object matching: asymptotic inference. arXiv:2006.12287 (2020)

  36. Xu, H., Luo, D., Carin, L.: Scalable Gromov-Wasserstein learning for graph partitioning and matching. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  37. Xu, H., Luo, D., Zha, H., Carin, L.: Gromov-Wasserstein learning for graph matching and node embedding. In: International Conference on Machine Learning (2019)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Mathieu Carrière for help with the MREC code, Vikas Garg for sharing code from [13], Facundo Mémoli for providing useful feedback, and the anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Needham .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8707 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chowdhury, S., Miller, D., Needham, T. (2021). Quantized Gromov-Wasserstein. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12977. Springer, Cham. https://doi.org/10.1007/978-3-030-86523-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86523-8_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86522-1

  • Online ISBN: 978-3-030-86523-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics