Skip to main content

Binarization Strategy Using Multiple Convolutional Autoencoder Network for Old Sundanese Manuscript Images

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 Workshops (ICDAR 2021)

Abstract

The binarization step for old documents is still a challenging task even though many hand-engineered and deep learning algorithms have been offered. In this research work, we address foreground and background segmentation using a convolutional autoencoder network with 3 supporting components. The assessment of several hyper-parameters including the window size, the number of convolution layers, the kernel size, the number of filters as well as the number of encoder-decoder layers on the network is conducted. In addition, the skip connections approach is considered in the decoding procedure. Moreover, we evaluated the summation and concatenation function before the up-sampling process to reuse the previous low-level feature maps and to enrich the decoded representation. Based on several experiments, we determined that kernel size, the number of filters, and the number of encoder-decoder blocks have a little impact in term of binarization performance. While the window size and multiple convolutional layers are more impactful than other hyper-parameters. However, they require more storage and may increase computation costs. Moreover, a careful embedding of batch normalization and dropout layers also provides a contribution to handle overfitting in the deep learning model. Overall, the multiple convolutional autoencoder network with skip connection successfully enhances the binarization accuracy on old Sundanese palm leaf manuscripts compared to preceding state of the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sulaiman, A., Omar, K., Nasrudin, M.F.: Degraded historical document binarization: a review on issues, challenges, techniques, and future directions. J. Imaging 5(4), 48 (2019)

    Article  Google Scholar 

  2. Tensmeyer, C., Martinez, T.: Historical document image binarization: a review. SN Comput. Sci. 1(3), 1–26 (2020). https://doi.org/10.1007/s42979-020-00176-1

    Article  Google Scholar 

  3. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  4. Niblack, W.: An Introduction to Digital Image Processing. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  5. Bernsen, J.: Dynamic thresholding of gray level image. In: ICPR 1986: Proceedings of International Conference on Pattern Recognition, Berlin, pp. 1251–1255 (1986)

    Google Scholar 

  6. Kesiman, M.W.A., et al.: Benchmarking of document image analysis tasks for palm leaf manuscripts from Southeast Asia. J. Imaging 4(2), 43 (2018)

    Article  Google Scholar 

  7. Howe, N.R.: Document binarization with automatic parameter tuning. Int. J. Doc. Anal. Recognit. 16(3), 247–258 (2013)

    Article  Google Scholar 

  8. Mesquita, R.G., Silva, R.M.A., Mello, C.A.B., Miranda, P.B.C.: Parameter tuning for document image binarization using a racing algorithm. Expert Syst. Appl. 42(5), 2593–2603 (2015)

    Article  Google Scholar 

  9. Sauvola, J., Seppanen, T., Haapakoski, S., Pietikainen, M.: Adaptive document binarization. In: Proceedings of the Fourth ICDAR, pp. 147–152 (1997)

    Google Scholar 

  10. Pastor-Pellicer, J., España-Boquera, S., Zamora-Martínez, F., Afzal, M.Z., Castro-Bleda, M.J.: Insights on the use of convolutional neural networks for document image binarization. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9095, pp. 115–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19222-2_10

    Chapter  Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  12. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  13. Tensmeyer, C., Martinez, T.: Document image binarization with fully convolutional neural networks. In: 2017 14th IAPR ICDAR, pp. 99–104 (2017)

    Google Scholar 

  14. Peng, X., Cao, H., Natarajan, P.: Using convolutional encoder-decoder for document image binarization. In: 2017 14th IAPR ICDAR, pp. 708–713 (2017)

    Google Scholar 

  15. Calvo-Zaragoza, J., Gallego, A.J.: A selectional auto-encoder approach for document image binarization. Pattern Recognit. 86, 37–47 (2019)

    Article  Google Scholar 

  16. Lazzara, G., Levillain, R., Geraud, T., Jacquelet, Y., Marquegnies, J., Crepin-Leblond, A.: The SCRIBO module of the Olena platform: a free software framework for document image analysis. In: 2011 ICDAR, pp. 252–258 (2011)

    Google Scholar 

  17. Pratikakis, I., Zagoris, K., Barlas, G., Gatos, B.: ICFHR 2016 handwritten document image binarization contest (H-DIBCO 2016). In: Proceedings of the International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 619–623 (2016)

    Google Scholar 

  18. Burie, J.C., et al.: ICFHR2016 competition on the analysis of handwritten text in images of balinese palm leaf manuscripts. In: 2016 15th ICFHR, pp. 596–601 (2016)

    Google Scholar 

  19. Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow?: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly, Sebastopol (2019)

    Google Scholar 

  20. Feng, X., Jonathan, W., Q.M., Yang, Y., Cao, L.: An autuencoder-based data augmentation strategy for generalization improvement of DCNNs. Neurocomputing 402, 283–297 (2020)

    Google Scholar 

  21. Ribeiro, M., Lazzaretti, A.E., Lopes, H.S.: A study of deep convolutional auto-encoders for anomaly detection in videos. Pattern Recognit. Lett. 105, 13–22 (2018)

    Article  Google Scholar 

  22. Heger, J., Desai, G., Zein El Abdine, M.: Anomaly detection in formed sheet metals using convolutional autoencoders. In: Procedia CIRP, pp. 1281–1285. Elsevier B.V. (2020)

    Google Scholar 

  23. Mao, X.-J., Shen, C., Yang, Y.-B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 2810–2818. Curran Associates Inc., Red Hook (2016)

    Google Scholar 

  24. Xia, M., Liu, X., Wong, T.T.: Invertible grayscale. ACM Trans. Graph. 37, 1–10 (2018)

    Article  Google Scholar 

  25. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Canada, pp. 1–14 (2014)

    Google Scholar 

  26. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: ICLR-2015 (2015)

    Google Scholar 

  27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  28. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on CVPR, pp. 2261–2269 (2017)

    Google Scholar 

  29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: The 32nd International Conference on Machine Learning, Lille, France (2015)

    Google Scholar 

  32. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 4278–4284. AAAI Press (2017)

    Google Scholar 

  33. Sun, S., Pang, J., Shi, J., Yi, S., Ouyang, W.: FishNet: a versatile backbone for image, region, and pixel level prediction. In: 32nd Conference on Neural Information Processing Systems, pp. 754–764 (2018)

    Google Scholar 

  34. Thakkar, V., Tewary, S., Chakraborty, C.: Batch normalization in convolutional neural networks - a comparative study with CIFAR-10 data. In: 2018 Fifth International Conference on Emerging Applications of Information Technology, pp. 1–5 (2018)

    Google Scholar 

  35. Garbin, C., Zhu, X., Marques, O.: Dropout vs. batch normalization: an empirical study of their impact to deep learning. Multimed. Tools Appl. 79, 12777–12815 (2020)

    Google Scholar 

  36. Kesiman, M.W.A., et al.: ICFHR 2018 competition on document image analysis tasks for southeast Asian palm leaf manuscripts. In: Proceedings of ICFHR, pp. 483–488. IEEE (2018)

    Google Scholar 

  37. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  38. Pastor-Pellicer, J., Zamora-Martínez, F., España-Boquera, S., Castro-Bleda, M.J.: F-measure as the error function to train neural networks. In: Rojas, I., Joya, G., Gabestany, J. (eds.) IWANN 2013. LNCS, vol. 7902, pp. 376–384. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38679-4_37

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank Riki Nawawi and Undang Darsa as Sundanese philologists for their fruitful discussions regarding old Sundanese manuscripts. This work is supported by the Directorate General of Higher Education, Ministry of Education, Culture, Research and Technology, the Republic of Indonesia through the funding of the BPPLN-DIKTI Indonesian Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Paulus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paulus, E., Burie, JC., Verbeek, F.J. (2021). Binarization Strategy Using Multiple Convolutional Autoencoder Network for Old Sundanese Manuscript Images. In: Barney Smith, E.H., Pal, U. (eds) Document Analysis and Recognition – ICDAR 2021 Workshops. ICDAR 2021. Lecture Notes in Computer Science(), vol 12917. Springer, Cham. https://doi.org/10.1007/978-3-030-86159-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86159-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86158-2

  • Online ISBN: 978-3-030-86159-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics