Skip to main content

Deep Learning Based Semantic Page Segmentation of Document Images in Chinese and English

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12836))

Included in the following conference series:

Abstract

Semantic page segmentation of document images is a basic task for document layout analysis which is key to document reconstruction and digitalization. Previous work usually considers only a few semantic types in a page (e.g., text and non-text) and performs mainly on English document images and it is still challenging to make the finer semantic segmentation on Chinese and English document pages. In this paper, we propose a deep learning based method for semantic page segmentation in Chinese and English documents such that a document page can be decomposed into regions of four semantic types such as text, table, figure and formula. Specifically, a deep semantic segmentation neural network is designed to achieve the pixel-wise segmentation where each pixel of an input document page image is labeled as background or one of the four categories above. Then we can obtain the accurate locations of regions in different types by implementing the Connected Component Analysis algorithm on the prediction mask. Moreover, a Non-Intersecting Region Segmentation Algorithm is further designed to generate a series of regions which do not overlap each other, and thus improve the segmentation results and avoid possible location conflicts in the page reconstruction. For the training of the neural network, we manually annotate a dataset whose documents are from Chinese and English language sources and contain various layouts. The experimental results on our collected dataset demonstrate the superiority of our proposed method over the other existing methods. In addition, we utilize transfer learning on public POD dataset and obtain the promising results in comparison with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cesarini, F., Lastri, M., Marinai, S., Soda, G.: Encoding of modified XY trees for document classification. In: Proceedings of 6th International Conference on Document Analysis and Recognition, pp. 1131–1136. IEEE (2001)

    Google Scholar 

  2. Chen, K., Yin, F., Liu, C.L.: Hybrid page segmentation with efficient whitespace rectangles extraction and grouping. In: 12th International Conference on Document Analysis and Recognition, pp. 958–962. IEEE (2013)

    Google Scholar 

  3. Yi, X., Gao, L., Liao, Y., Zhang, X., Liu, R., Jiang, Z.: CNN based page object detection in document images. In: 14th IAPR International Conference on Document Analysis and Recognition, vol. 1, pp. 230–235. IEEE (2017)

    Google Scholar 

  4. Saha, R., Mondal, A., Jawahar, C.V.: Graphical object detection in document images. In: 15th International Conference on Document Analysis and Recognition, pp. 51–58. IEEE (2019)

    Google Scholar 

  5. Zhong, X., Tang, J., Yepes, A.J.: PubLayNet: largest dataset ever for document layout analysis. In: 15th International Conference on Document Analysis and Recognition, pp. 1015–1022. IEEE (2019)

    Google Scholar 

  6. He, D., Cohen, S., Price, B., Kifer, D., Giles, C.L.: Multi-scale multi-task FCN for semantic page segmentation and table detection. In: 14th IAPR International Conference on Document Analysis and Recognition, vol. 1, pp. 254–261. IEEE (2017)

    Google Scholar 

  7. Lee, J., Hayashi, H., Ohyama, W., Uchida, S.: Page segmentation using a convolutional neural network with trainable co-occurrence features. In: 15th International Conference on Document Analysis and Recognition, pp. 1023–1028. IEEE (2019)

    Google Scholar 

  8. Li, Y., Zou, Y., Ma, J.: DeepLayout: a semantic segmentation approach to page layout analysis. In: De-Shuang Huang, M., Gromiha, M., Han, K., Hussain, A. (eds.) Intelligent Computing Methodologies, pp. 266–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95957-3_30

    Chapter  Google Scholar 

  9. Yang, X., Yumer, E., Asente, P., Kraley, M., Kifer, D., Lee Giles, C.: Learning to extract semantic structure from documents using multimodal fully convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5315–5324. IEEE (2017)

    Google Scholar 

  10. Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: DeepDeSRT: deep learning for detection and structure recognition of tables in document images. In: 14th IAPR International Conference on Document Analysis and Recognition, vol. 1, pp. 1162–1167. IEEE (2017)

    Google Scholar 

  11. Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: CascadeTabNet: an approach for end to end table detection and structure recognition from image-based documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 572–573. IEEE (2020)

    Google Scholar 

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969. IEEE (2017)

    Google Scholar 

  14. Li, K., et al.: Cross-domain document object detection: benchmark suite and method. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12915–12924. IEEE (2020)

    Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125. IEEE (2017)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE (2015)

    Google Scholar 

  19. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.

  20. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  21. Gao, L., Yi, X., Jiang, Z., Hao, L., Tang, Z.: ICDAR2017 competition on page object detection. In: 14th IAPR International Conference on Document Analysis and Recognition, vol. 1, pp. 1417–1422. IEEE (2017)

    Google Scholar 

  22. Antonacopoulos, A., Bridson, D.: Performance analysis framework for layout analysis methods. In: 9th International Conference on Document Analysis and Recognition, vol. 2, pp. 1258–1262. IEEE (2007)

    Google Scholar 

  23. Li, X.H., Yin, F., Liu, C.L.: Page object detection from pdf document images by deep structured prediction and supervised clustering. In: 24th International Conference on Pattern Recognition, pp. 3627–3632. IEEE (2018)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of China under the grant 62071171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwen Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, Y., Ma, J. (2021). Deep Learning Based Semantic Page Segmentation of Document Images in Chinese and English. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Bevilacqua, V. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12836. Springer, Cham. https://doi.org/10.1007/978-3-030-84522-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84522-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84521-6

  • Online ISBN: 978-3-030-84522-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics