Abstract
In this study, we test several augmentation and distant supervision techniques to increase sentiment datasets in Russian. We use transfer learning approach pre-trained on created additional data to improve the performance. We compare our proposed approach based on distant supervision with existing augmentation methods. The best results were achieved using three-step approach of sequential training on general, thematic and original train samples. The results were improved by more than 3% to the current state-of-the-art methods for most of the benchmarks using data automatically annotated with distant supervision technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amigó, E., et al.: Overview of RepLab 2013: evaluating online reputation monitoring systems. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 333–352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40802-1_31
Baymurzina, D., Kuznetsov, D., Burtsev, M.: Language model embeddings improve sentiment analysis in Russian. In: Komp’juternaja Lingvistika i Intellektual’nye Tehnologii, pp. 53–62 (2019)
Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python. O’reilly Media Inc., Sebastopol (2009)
Burtsev, M.: DeepPavlov: open-source library for dialogue systems. In: Proceedings of ACL 2018, System Demonstrations, pp. 122–127 (2018)
Chetviorkin, I., Loukachevitch, N.: Evaluating sentiment analysis systems in Russian. In: Proceedings of the 4th Biennial International Workshop on Balto-Slavic Natural Language Processing, pp. 12–17 (2013)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Duong, H.-T., Nguyen-Thi, T.-A.: A review: preprocessing techniques and data augmentation for sentiment analysis. Comput. Soc. Netw. 8(1), 1–16 (2020). https://doi.org/10.1186/s40649-020-00080-x
Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N project report, Stanford 1(12), 2009 (2009)
Golubev, A., Loukachevitch, N.: Improving results on Russian sentiment datasets. In: Filchenkov, A., Kauttonen, J., Pivovarova, L. (eds.) AINL 2020. CCIS, vol. 1292, pp. 109–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59082-6_8
Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: SpaCy: industrial-strength natural language processing in python. Zenodo (2020). https://doi.org/10.5281/zenodo.1212303
Kobayashi, S.: Contextual augmentation: data augmentation by words with paradigmatic relations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Short Papers), vol. 2, pp. 452–457 (2018)
Loukachevitch, N., Dobrov, B.V.: RuTHes linguistic ontology vs. Russian wordnets. In: Proceedings of the Seventh Global Wordnet Conference, pp. 154–162 (2014)
Loukachevitch, N., Levchik, A.: Creating a general Russian sentiment lexicon. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 1171–1176 (2016)
Loukachevitch, N., Rubtsova, Y.: Entity-oriented sentiment analysis of tweets: results and problems. In: Král, P., Matoušek, V. (eds.) TSD 2015. LNCS (LNAI), vol. 9302, pp. 551–559. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24033-6_62
Loukachevitch, N., Rubtsova, Y.: SentiRuEval-2016: overcoming time gap and data sparsity in tweet sentiment analysis. In: Proceedings of International Conference Dialog-2016 (2016)
Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Mohammad, S., Salameh, M., Kiritchenko, S.: Sentiment lexicons for Arabic social media. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 33–37 (2016)
Moshkin, V., Konstantinov, A., Yarushkina, N.: Application of the BERT language model for sentiment analysis of social network posts. In: Kuznetsov, S.O., Panov, A.I., Yakovlev, K.S. (eds.) RCAI 2020. LNCS (LNAI), vol. 12412, pp. 274–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59535-7_20
Rogers, A., Romanov, A., Rumshisky, A., Volkova, S., Gronas, M., Gribov, A.: RuSentiment: an enriched sentiment analysis dataset for social media in Russian. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 755–763 (2018)
Rubtsova, Y.: Constructing a corpus for sentiment classification training. Softw. Syst. 109, 72–78 (2015)
Rusnachenko, N., Loukachevitch, N., Tutubalina, E.: Distant supervision for sentiment attitude extraction. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019), pp. 1022–1030 (2019)
Sahni, T., Chandak, C., Chedeti, N.R., Singh, M.: Efficient twitter sentiment classification using subjective distant supervision. In: 2017 9th International Conference on Communication Systems and Networks (COMSNETS), pp. 548–553. IEEE (2017)
Smetanin, S., Komarov, M.: Sentiment analysis of product reviews in Russian using convolutional neural networks. In: 2019 IEEE 21st Conference on Business Informatics (CBI), vol. 1, pp. 482–486. IEEE (2019)
Smetanin, S., Komarov, M.: Deep transfer learning baselines for sentiment analysis in Russian. Inf. Process. Manage. 58(3), 102484 (2021)
Sun, C., Huang, L., Qiu, X.: Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 380–385 (2019)
Wang, W.Y., Yang, D.: That’s so annoying!!!: A lexical and frame-semantic embedding based data augmentation approach to automatic categorization of annoying behaviors using# petpeeve tweets. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2557–2563 (2015)
Wei, J., Zou, K.: EDA: easy data augmentation techniques for boosting performance on text classification tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 6383–6389 (2019)
Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2020)
Acknowledgments
The reported study was funded by RFBR according to the research project â„–Â 20-07-01059.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Golubev, A., Loukachevitch, N. (2021). Use of Augmentation and Distant Supervision for Sentiment Analysis in Russian. In: EkÅ¡tein, K., Pártl, F., KonopÃk, M. (eds) Text, Speech, and Dialogue. TSD 2021. Lecture Notes in Computer Science(), vol 12848. Springer, Cham. https://doi.org/10.1007/978-3-030-83527-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-83527-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-83526-2
Online ISBN: 978-3-030-83527-9
eBook Packages: Computer ScienceComputer Science (R0)