Abstract
Triage in emergency department (ED) is adopted procedure in several countries using different emergency severity index systems. The objective is to subdivide patients into categories of increasing acuity to allow for prioritization and reduce emergency department congestion. However, while several studies have focused on improving the triage system and managing medical resources, the classification of patients depends strongly on nurse’s subjective judgment and thus is prone to human errors. So, it is crucial to set up a system able to model, classify and reason about vague, incomplete and uncertain knowledge. Thus, we propose in this paper a novel fuzzy ontology based on a new Fuzzy Emergency Severity Index (F-ESI_2.0) to improve the accuracy of current triage systems. Therefore, we model some fuzzy relevant medical subdomains that influence the patient’s condition. Our approach is based on continuous structured and unstructured textual data over more than two years collected during patient visits to the ED of the Lille University Hospital Center (LUHC) in France. The resulting fuzzy ontology is able to model uncertain knowledge and organize the patient’s passage to the ED by treating the most serious patients first. Evaluation results shows that the resulting fuzzy ontology is a complete domain ontology which can improve current triage system failures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Forero, R., McCarthy, S., Hillman, K.: Access block and emergency department overcrowding. Crit. Care 15, 216 (2011). https://doi.org/10.1186/cc9998
Göransson, K.E., Ehrenberg, A., Marklund, B., Ehnfors, M.: Emergency department triage: is there a link between nurses’ personal characteristics and accuracy in triage decisions? Accid. Emerg. Nurs. 14(2), 83–88 (2006)
Sterling, R.E.P., Did, M., Schrager, J.D.: Prediction of emergency department patient disposition based on natural language processing of triage notes. Int. J. Med. Inf. 129, 184–188 (2019)
Salman, O., Rasid, M., Saripan, M., Subramaniam, S.: Multisources data fusion framework for remote triage prioritization in telehealth. J. Med. Syst. 38(9), 1–23 (2014)
Wang, S.-T.: Construct an optimal triage prediction model: a case study of the emergency department of a teaching hospital in Taiwan. J. Med. Syst. 37(5), 1–11 (2013)
Dexheimer, J., et al.: An asthma management system in a pediatric emergency department. Int. J. Med. Inform. 82(4), 230–238 (2013)
Jentsch, M., Ramirez, L., Wood, L., Elmasllari, E., The reconfiguration of triage by introduction of technology. In: Proceedings of the 15th International Conference on Human computer Interaction with Mobile Devices and Services, New York, NY, USA, pp. 55–64 (2013)
Christ, M., Grossmann, F., Winter, D., Bingisser, R., Platz, E.: Modern triage in the emergency department. Dtsch. Arztebl. Int. 107(50), 892–898 (2010)
Farion, K., Michalowski, W., Wilk, S., O’Sullivan, D., Rubin, S., Weiss, D.: Clinical decision support system for point of care use: ontology driven design and software implementation. Meth. Inf. Med. 48(4), 381–390 (2009)
Pedro, J., Burstein, F., Wassertheil, J., Arora, N., Churilov, L., Zaslavsky, A., On development and evaluation of prototype mobile decision support for hospital triage. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences, p. 157c (2005)
Jayaraman, P., Gunasekera, K., Burstein, F., Haghighi, P., Soetikno, H., Zaslavsky, A.: An ontology-based framework for real-time collection and visualization of mobile field triage data in mass gatherings. In: Proceedings of the 46th Annual Hawaii International Conference on System Sciences, Wailea, Maui, HI, pp. 146–155 (2013)
Wunsch, G., Costa, C.A., Righi, R.R.: A semantic-based model for Triage patients in emergency departments. J. Med. Syst. 41(4), 1–12 (2017)
El-Sappagh, S., El-Masri, S., Elmogy, M., Riad, R., Saddik, B.: An ontological case base engineering methodology for diabetes management. J. Med. Syst. 38(8), 1–14 (2014)
Zhang, F., Ma, Z., Yan, L., Cheng, J.: Construction of fuzzy OWL ontologies from fuzzy EER models: a semantics-preserving approach. Fuzzy Sets Syst. 229, 1–32 (2013)
Maalej, S., Ghorbel, H., Bahri, A., Bouaziz, R.: Construction des composants ontologiques flousà partir de corpus de données sémantiques floues. In: Actes de la conférence Inforsid 2010, Marseille, France, pp. 361–376 (2010)
Quan, T, Hui, S, Cao, T.: FOGA: a fuzzy ontology generation framework for scholarly semantic web. In: Proceedings of the 2004 Knowledge Discovery and Ontologies Workshop, Pisa, Italy (2004)
Akremi, H., Zghal, S., Jouhet, V., Diallo, G.: FONTO: Une nouvelle méthode de la fuzzification d’ontologies. In: JFO2016 (2017)
Fernandez, M., Gómez-Pérez, A., Juristo, N.: METHONTOLOGY: from ontological art towards ontological engineering. In: Actes de AAAI 1997 (1997)
Cranefield, S., Purvis, M.: UML as an Ontology Modelling Language. Department of Information Science, University of Otago, New Zealand (1999)
Bright, T.J., Yoko Furuya, E., Kuperman, G.J., Cimino, J.J., Bakken, S.: Development and evaluation of an ontology for guiding appropriate antibiotic prescribing. J. Biomed. Inf. 45(1), 120–128 (2012)
Alani, H., Dasmahapatra, S., Wilks, Y.: Data driven ontology evaluation. In: Proceedings of the International Conference on Language Resources and Evaluation, Lisbon, Portugal, pp. 164–168 (2004)
El-Sappagh, S., Elmogy, M.: A fuzzy ontology modeling for case base knowledge in diabetes mellitus domain. Eng. Sci. Technol. Int. J. 20(3), 1025–1040 (2017)
Djedidi, R., Aufaure, M.-A.: ONTO-EVO A L an ontology evolution approach guided by pattern modeling and quality evaluation. In: Link, S., Prade, H. (eds.) 6th International Symposium on Foundations of Information and Knowledge Systems, FoIKS 2010, Sofia, Bulgaria, February 15-19, 2010. Proceedings, pp. 286–305. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11829-6_19
Yu, J., Thom, J.A., Tam, A.: Evaluating ontology criteria for requirements in a geographic travel domain. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1517–1534. Springer, Heidelberg (2005). https://doi.org/10.1007/11575801_36
Alexopoulos, P., Mylonas, P.: Towards vagueness-oriented quality assessment of ontologies. Artif. Intell. Meth. Appl. 8445, 448–453 (2014)
Djellal, A.: Thèse pour l’obtention du diplôme de magister en informatique. Prise en compte de la notion de flou pour la représentation d’ontologies multi-points de vue en logique de descriptions. Université Mentouri Constantine, Algérie (2010)
Gruber, T.: Ontology. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9_1318
Zekri, F., Turki, E., Bouaziz, R., AlzFuzzyOnto: Une ontologie floue pour l’aide à la décisiondans le domaine de la maladie d’Alzheimer. In: Actes du XXXIIIème Congrès INFORSID, Biarritz, France, 26–29 May 2015, pp. 83–98 (2015)
Zhai, J., Liang, Y., Jiang, J., Yi, Y.: Fuzzy ontology models based on fuzzy linguistic variable for knowledge management and information retrieval. In: Shi, Z., Mercier-Laurent, E., Leake, D. (eds.) Intelligent Information Processing IV, pp. 58–67. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-87685-6_9
Straccia, U.: Reasoning with fuzzy description logics. J. Artif. Intell. 14, 137–166 (2001)
Ghorbel, H., Bahri, A.B.R.: Fuzzy ontologies model for semantic web. In: The 2nd International Conference on Information, Process and Knowledge Management, eKNow 2010, St. Maarten, Netherlands Antilles (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Fakhfakh, K. et al. (2021). Fuzzy Ontology for Patient Emergency Department Triage. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12744. Springer, Cham. https://doi.org/10.1007/978-3-030-77967-2_60
Download citation
DOI: https://doi.org/10.1007/978-3-030-77967-2_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77966-5
Online ISBN: 978-3-030-77967-2
eBook Packages: Computer ScienceComputer Science (R0)