Skip to main content

Fuzzy Ontology for Patient Emergency Department Triage

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Triage in emergency department (ED) is adopted procedure in several countries using different emergency severity index systems. The objective is to subdivide patients into categories of increasing acuity to allow for prioritization and reduce emergency department congestion. However, while several studies have focused on improving the triage system and managing medical resources, the classification of patients depends strongly on nurse’s subjective judgment and thus is prone to human errors. So, it is crucial to set up a system able to model, classify and reason about vague, incomplete and uncertain knowledge. Thus, we propose in this paper a novel fuzzy ontology based on a new Fuzzy Emergency Severity Index (F-ESI_2.0) to improve the accuracy of current triage systems. Therefore, we model some fuzzy relevant medical subdomains that influence the patient’s condition. Our approach is based on continuous structured and unstructured textual data over more than two years collected during patient visits to the ED of the Lille University Hospital Center (LUHC) in France. The resulting fuzzy ontology is able to model uncertain knowledge and organize the patient’s passage to the ED by treating the most serious patients first. Evaluation results shows that the resulting fuzzy ontology is a complete domain ontology which can improve current triage system failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.w3.org/TR/owl2-overview/

  2. 2.

    https://www.health.harvard.edu/a-through-c.

  3. 3.

    https://protege.stanford.edu/

References

  1. Forero, R., McCarthy, S., Hillman, K.: Access block and emergency department overcrowding. Crit. Care 15, 216 (2011). https://doi.org/10.1186/cc9998

    Article  Google Scholar 

  2. Göransson, K.E., Ehrenberg, A., Marklund, B., Ehnfors, M.: Emergency department triage: is there a link between nurses’ personal characteristics and accuracy in triage decisions? Accid. Emerg. Nurs. 14(2), 83–88 (2006)

    Article  Google Scholar 

  3. Sterling, R.E.P., Did, M., Schrager, J.D.: Prediction of emergency department patient disposition based on natural language processing of triage notes. Int. J. Med. Inf. 129, 184–188 (2019)

    Article  Google Scholar 

  4. Salman, O., Rasid, M., Saripan, M., Subramaniam, S.: Multisources data fusion framework for remote triage prioritization in telehealth. J. Med. Syst. 38(9), 1–23 (2014)

    Article  Google Scholar 

  5. Wang, S.-T.: Construct an optimal triage prediction model: a case study of the emergency department of a teaching hospital in Taiwan. J. Med. Syst. 37(5), 1–11 (2013)

    Article  Google Scholar 

  6. Dexheimer, J., et al.: An asthma management system in a pediatric emergency department. Int. J. Med. Inform. 82(4), 230–238 (2013)

    Article  Google Scholar 

  7. Jentsch, M., Ramirez, L., Wood, L., Elmasllari, E., The reconfiguration of triage by introduction of technology. In: Proceedings of the 15th International Conference on Human computer Interaction with Mobile Devices and Services, New York, NY, USA, pp. 55–64 (2013)

    Google Scholar 

  8. Christ, M., Grossmann, F., Winter, D., Bingisser, R., Platz, E.: Modern triage in the emergency department. Dtsch. Arztebl. Int. 107(50), 892–898 (2010)

    Google Scholar 

  9. Farion, K., Michalowski, W., Wilk, S., O’Sullivan, D., Rubin, S., Weiss, D.: Clinical decision support system for point of care use: ontology driven design and software implementation. Meth. Inf. Med. 48(4), 381–390 (2009)

    Article  Google Scholar 

  10. Pedro, J., Burstein, F., Wassertheil, J., Arora, N., Churilov, L., Zaslavsky, A., On development and evaluation of prototype mobile decision support for hospital triage. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences, p. 157c (2005)

    Google Scholar 

  11. Jayaraman, P., Gunasekera, K., Burstein, F., Haghighi, P., Soetikno, H., Zaslavsky, A.: An ontology-based framework for real-time collection and visualization of mobile field triage data in mass gatherings. In: Proceedings of the 46th Annual Hawaii International Conference on System Sciences, Wailea, Maui, HI, pp. 146–155 (2013)

    Google Scholar 

  12. Wunsch, G., Costa, C.A., Righi, R.R.: A semantic-based model for Triage patients in emergency departments. J. Med. Syst. 41(4), 1–12 (2017)

    Article  Google Scholar 

  13. El-Sappagh, S., El-Masri, S., Elmogy, M., Riad, R., Saddik, B.: An ontological case base engineering methodology for diabetes management. J. Med. Syst. 38(8), 1–14 (2014)

    Article  Google Scholar 

  14. Zhang, F., Ma, Z., Yan, L., Cheng, J.: Construction of fuzzy OWL ontologies from fuzzy EER models: a semantics-preserving approach. Fuzzy Sets Syst. 229, 1–32 (2013)

    Article  MathSciNet  Google Scholar 

  15. Maalej, S., Ghorbel, H., Bahri, A., Bouaziz, R.: Construction des composants ontologiques flousà partir de corpus de données sémantiques floues. In: Actes de la conférence Inforsid 2010, Marseille, France, pp. 361–376 (2010)

    Google Scholar 

  16. Quan, T, Hui, S, Cao, T.: FOGA: a fuzzy ontology generation framework for scholarly semantic web. In: Proceedings of the 2004 Knowledge Discovery and Ontologies Workshop, Pisa, Italy (2004)

    Google Scholar 

  17. Akremi, H., Zghal, S., Jouhet, V., Diallo, G.: FONTO: Une nouvelle méthode de la fuzzification d’ontologies. In: JFO2016 (2017)

    Google Scholar 

  18. Fernandez, M., Gómez-Pérez, A., Juristo, N.: METHONTOLOGY: from ontological art towards ontological engineering. In: Actes de AAAI 1997 (1997)

    Google Scholar 

  19. Cranefield, S., Purvis, M.: UML as an Ontology Modelling Language. Department of Information Science, University of Otago, New Zealand (1999)

    Google Scholar 

  20. Bright, T.J., Yoko Furuya, E., Kuperman, G.J., Cimino, J.J., Bakken, S.: Development and evaluation of an ontology for guiding appropriate antibiotic prescribing. J. Biomed. Inf. 45(1), 120–128 (2012)

    Article  Google Scholar 

  21. Alani, H., Dasmahapatra, S., Wilks, Y.: Data driven ontology evaluation. In: Proceedings of the International Conference on Language Resources and Evaluation, Lisbon, Portugal, pp. 164–168 (2004)

    Google Scholar 

  22. El-Sappagh, S., Elmogy, M.: A fuzzy ontology modeling for case base knowledge in diabetes mellitus domain. Eng. Sci. Technol. Int. J. 20(3), 1025–1040 (2017)

    Google Scholar 

  23. Djedidi, R., Aufaure, M.-A.: ONTO-EVO A L an ontology evolution approach guided by pattern modeling and quality evaluation. In: Link, S., Prade, H. (eds.) 6th International Symposium on Foundations of Information and Knowledge Systems, FoIKS 2010, Sofia, Bulgaria, February 15-19, 2010. Proceedings, pp. 286–305. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11829-6_19

    Chapter  Google Scholar 

  24. Yu, J., Thom, J.A., Tam, A.: Evaluating ontology criteria for requirements in a geographic travel domain. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1517–1534. Springer, Heidelberg (2005). https://doi.org/10.1007/11575801_36

    Chapter  Google Scholar 

  25. Alexopoulos, P., Mylonas, P.: Towards vagueness-oriented quality assessment of ontologies. Artif. Intell. Meth. Appl. 8445, 448–453 (2014)

    Google Scholar 

  26. Djellal, A.: Thèse pour l’obtention du diplôme de magister en informatique. Prise en compte de la notion de flou pour la représentation d’ontologies multi-points de vue en logique de descriptions. Université Mentouri Constantine, Algérie (2010)

    Google Scholar 

  27. Gruber, T.: Ontology. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9_1318

  28. Zekri, F., Turki, E., Bouaziz, R., AlzFuzzyOnto: Une ontologie floue pour l’aide à la décisiondans le domaine de la maladie d’Alzheimer. In: Actes du XXXIIIème Congrès INFORSID, Biarritz, France, 26–29 May 2015, pp. 83–98 (2015)

    Google Scholar 

  29. Zhai, J., Liang, Y., Jiang, J., Yi, Y.: Fuzzy ontology models based on fuzzy linguistic variable for knowledge management and information retrieval. In: Shi, Z., Mercier-Laurent, E., Leake, D. (eds.) Intelligent Information Processing IV, pp. 58–67. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-87685-6_9

    Chapter  Google Scholar 

  30. Straccia, U.: Reasoning with fuzzy description logics. J. Artif. Intell. 14, 137–166 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Ghorbel, H., Bahri, A.B.R.: Fuzzy ontologies model for semantic web. In: The 2nd International Conference on Information, Process and Knowledge Management, eKNow 2010, St. Maarten, Netherlands Antilles (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khouloud Fakhfakh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fakhfakh, K. et al. (2021). Fuzzy Ontology for Patient Emergency Department Triage. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12744. Springer, Cham. https://doi.org/10.1007/978-3-030-77967-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77967-2_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77966-5

  • Online ISBN: 978-3-030-77967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics