Abstract
We present a novel real-time simulation tool for modeling and analyzing a swarm of distributed autonomous mobile robots communicating over an unreliable and capacity restricted communication network. The robots are setup as ground vehicles and use C-PBP [8] as model predictive closed loop controller. This tool offers the ability to simulate rural as well as completely urban scenarios with static obstacles, dynamic obstacles with scripted movement, soil condition, noise floor, active jammers and static and dynamic obstacles for the links with adjustable damping. The goal of this simulation is the analysis of swarm behavior of robots for given missions such as terrain exploration, convoy escorting or creation of a mobile ad hoc network in disaster areas under realistic environmental conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahlers, E.: Funk-übersicht: WLAN-Wissen für Gerätewahl und Fehlerbeseitigung. c’t 2015(15), 178–181 (2015). https://www.heise.de/ct/ausgabe/2015-15-WLAN-Wissen-fuer-Geraetewahl-und-Fehlerbeseitigung-2717917.html
Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.: Control-guided communication: efficient resource arbitration and allocation in multi-hop wireless control systems. IEEE Control Syst. Lett. 4(1), 127–132 (2020)
Euler, J.: Optimal cooperative control of UAVs for dynamic data-driven monitoring tasks. Dissertation, Technische Universität Darmstadt, Darmstadt (2018)
Euler, J., von Stryk, O.: Optimized vehicle-specific trajectories for cooperative process estimation by sensor-equipped UAVs. In: 2017 IEEE International Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore, 29 May–3 June 2017, pp. 3397–3403. IEEE (2017)
Friis, H.T.: A note on a simple transmission formula. Proc. IRE 34(5), 254–256 (1946)
Fukushima, H., Kon, K., Matsuno, F.: Distributed model predictive control for multi-vehicle formation with collision avoidance constraints. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 5480–5485. IEEE (2005)
Grüne, L., Pannek, J.: Nonlinear Model Predictive Control: Theory and Algorithms. CCE. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46024-6
Hämäläinen, P., Rajamäki, J., Liu, C.K.: Online control of simulated humanoids using particle belief propagation. In: Proceedings of SIGGRAPH 2015. ACM, New York (2015)
Ihler, A., McAllester, D.: Particle belief propagation. In: International Conference on Artificial Intelligence and Statistics, vol. 5, pp. 256–263 (2009)
Jacob, B.: Eigen. http://eigen.tuxfamily.org/index.php?title=Main_Page
Kuntz, A., Schmidt-Eisenlohr, F., Graute, O., Hartenstein, H., Zitterbart, M.: Introducing probabilistic radio propagation models in OMNeT++ mobility framework and cross validation check with NS-2. In: Molnár, S., Heath, J.R., Dalle, O., Wainer, G.A. (eds.) Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, SimuTools 2008, Marseille, France, 3–7 March 2008, p. 72. ICST/ACM (2008)
Lächele, J., Franchi, A., Bülthoff, H.H., Robuffo Giordano, P.: SwarmSimX: real-time simulation environment for multi-robot systems. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol. 7628, pp. 375–387. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34327-8_34
Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)
Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.: Feedback control goes wireless: guaranteed stability over low-power multi-hop networks. In: Liu, X., Tabuada, P., Pajic, M., Bushnell, L. (eds.) Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2019, Montreal, QC, Canada, 16–18 April 2019, pp. 97–108. ACM (2019)
Puzicha, A.: Modeling and analysis of a distributed non-linear model-predictive control for swarms of autonomous robots with limited communication skills (in German). Master’s thesis, Department of Computer Science, TU Dortmund (2019)
Ritter, T.: PDE-based dynamic data-driven monitoring of atmospheric dispersion processes. Dissertation, Technische Universität Darmstadt, Darmstadt (2017)
Strobel, A.: Verteilte nichtlineare modellprädiktive Regelung von unbemannten Luftfahrzeug-Schwärmen. Dissertation, Technische Universität Darmstadt, Darmstadt (2016)
Tricaud, C., Chen, Y.: Optimal Mobile Sensing and Actuatin Policies in Cyber-physical Systems. Springer, London (2011). https://doi.org/10.1007/978-1-4471-2262-3
Vieira, B., Severino, R., Filho, E.V., Koubaa, A., Tovar, E.: Copadrive - a realistic simulation framework for cooperative autonomous driving applications. In: Proc. 8th IEEE International Conference on Connected Vehicles and Expo (ICCVE 2019). IEEE (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Puzicha, A., Buchholz, P. (2021). A Simulation Environment for Autonomous Robot Swarms with Limited Communication Skills. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-030-72795-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-72795-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72794-9
Online ISBN: 978-3-030-72795-6
eBook Packages: Computer ScienceComputer Science (R0)