Abstract
Multiplane estimation from three-dimensional (3D) point clouds is a necessary step in the negative obstacle detection. In recent years, different Random Sample Consensus (RANSAC) based methods have been proposed for this purpose. In this paper, we propose a multi-stage algorithm based on RANSAC plane estimation and KMeans clustering, and apply it to the negative stairs detection. This method contains two steps: first, it clusters the point clouds and downsamples them; second, it estimates the planes by iteratively using RANSAC algorithm with the downsampled data. Finally, according to the relationship between regions to determine whether there is an obstacle in front of the autonomous vehicle. Our experimental results show that this method has satisfactory performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shang, E., An, X., Tao, W., Tingbo, H., Yuan, Q., He, H.: LiDAR based negative obstacle detection for field autonomous land vehicles. J. Field Robot. 33(5), 591–617 (2016)
Gao, B., Xu, A., Pan, Y., Zhao, X., Yao, W., Zhao, H.: Off-road drivable area extraction using 3D LiDAR data. In: 2019 IEEE Intelligent Vehicles Symposium (IV) (2019)
Morton, R.D., Olson, E.: Positive and negative obstacle detection using the HLD classifier (2011)
Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point-cloud shape detection. Comput. Graph. Forum 26(2), 214–226 (2007)
Saval-Calvo, M., Azorin-Lopez, J., Fuster-Guillo, A., Garcia-Rodriguez, J.: Three-dimensional planar model estimation using multi-constraint knowledge based on k-means and RANSAC. Appl. Soft Comput. 34, 572–586 (2015)
Xu, G., Yuan, J., Li, X., Su, J.: Reconstruction method adopting laser plane generated from RANSAC and three dimensional reference. MAPAN-J. Metrol. Soc. India 33, 307–319 (2018)
Zheng, Y., Liu, J., Liu, Z., Wang, T., Ahmad, R.: A primitive-based 3D reconstruction method for remanufacturing. Int. J. Adv. Manuf. Technol. 103(9–12), 3667–3681 (2019)
Muhovic, J., Mandeljc, R., Bovcon, B., Kristan, M., Pers, J.: Obstacle tracking for unmanned surface vessels using 3-D point cloud. IEEE J. Oceanic Eng. 45, 1–13 (2019)
Zhou, K., Richtsfeld, A., Varadarajan, K.M., Zillich, M., Vincze, M.: Combining plane estimation with shape detection for holistic scene understanding, pp. 736–747 (2011)
Qian, X., Ye, C.: NCC-RANSAC: a fast plane extraction method for 3-D range data segmentation. IEEE Trans. Cybern. 44(12), 2771–2783 (2014)
Wang, W., Gao, W.: Efficient multi-plane extraction from massive 3D points for modeling large-scale urban scenes. Vis. Comput. 35(5), 625–638 (2019)
Gallo, O., Manduchi, R., Rafii, A.: CC-RANSAC: fitting planes in the presence of multiple surfaces in range data. Pattern Recogn. Lett. 32(3), 403–410 (2011)
Acknowledgment
This work is financially supported by the Nature Science Foundation with No. 61862005, the Guangxi Nature Science Foundation with No. 2017GXNSFBA198226, the Scientific Research Foundation of Guangxi University with No. XGZ160483, the Higher Education Undergraduate Teaching Reform Project of Guangxi with No. 2017JGB108, and the project with No. DD3070051008.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Y., Yang, L., Wang, P.SP. (2021). Real-Time Stair Detection Using Multi-stage Ground Estimation Based on KMeans and RANSAC. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds) Trends and Applications in Information Systems and Technologies. WorldCIST 2021. Advances in Intelligent Systems and Computing, vol 1365. Springer, Cham. https://doi.org/10.1007/978-3-030-72657-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-72657-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72656-0
Online ISBN: 978-3-030-72657-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)