Abstract
Traditional steganography embeds confidential information by modifying the carrier at the symbol level, e.g., the pixels of an image or the words of a text. Since modification traces will inevitably be left on the carrier, it is hard to resist the detection of the steganalysis algorithms. To address this problem, this paper proposes a novel steganographic framework called multi-modal steganography, which hides secret messages at the semantic level. In this framework, multi-modal covers are projected into a common semantic space, in which their relevancy can be measured. The confidential information can be embedded in the semantic relevancy among the covers with a relevancy-message mapping algorithm. By choosing and sending a series of original multi-modal covers, the secret messages are transmitted to the receiver. In this paper, we adopt text and image as the two modalities. A visual semantic embedding model is utilized to measure the relevancy between the texts and images. Both the theoretical analysis and experiments demonstrate that the proposed multi-modal steganography has good resistance to the existing steganalysis methods and high quality of concealment.
This research is supported by the National Key R&D Program (2018YFB0804103) and the National Natural Science Foundation of China (No. U1705261 and No. U1836204).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Du, Y., Yin, Z., Zhang, X.: Improved lossless data hiding for JPEG images based on histogram modification. Comput. Mater. Continua 55(3), 495–507 (2018)
Faghri, F., Fleet, D.J., Kiros, J.R., Fidler, S.: VSE++: improving visual-semantic embeddings with hard negatives. arXiv preprint arXiv:1707.05612 (2017)
Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge (2009)
Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)
Hu, Y., Li, H., Song, J., Huang, Y.: MM-Stega: multi-modal steganography based on text-image matching. In: Sun, X., Wang, J., Bertino, E. (eds.) ICAIS 2020. CCIS, vol. 1254, pp. 313–325. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-8101-4_29
Hu, Y., Zheng, L., Yang, Y., Huang, Y.: Twitter100k: a real-world dataset for weakly supervised cross-media retrieval. IEEE Trans. Multimed. 20(4), 927–938 (2018)
Huang, Y., Liu, C., Tang, S., Bai, S.: Steganography integration into a low-bit rate speech codec. IEEE Trans. Inf. Forensics Secur. 7(6), 1865–1875 (2012)
Li, L., Zhang, W., Chen, K., Zha, H., Yu, N.: Side channel steganalysis: when behavior is considered in steganographer detection. Multimed. Tools Appl. 78(7), 8041–8055 (2019)
Li, X., Yang, B., Cheng, D., Zeng, T.: A generalization of LSB matching. IEEE Sig. Process. Lett. 16(2), 69–72 (2009)
Lie, W.N., Lin, G.S.: A feature-based classification technique for blind image steganalysis. IEEE Trans. Multimed. 7(6), 1007–1020 (2005)
Westfeld, A.: F5—A steganographic algorithm. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45496-9_21
Wu, S., Zhong, S., Liu, Y.: Deep residual learning for image steganalysis. Multimed. Tools Appl. 77(9), 10437–10453 (2018)
Xu, G., Wu, H., Shi, Y.: Structural design of convolutional neural networks for steganalysis. IEEE Sig. Process. Lett. 23(5), 708–712 (2016)
Yang, Z., Guo, X., Chen, Z., Huang, Y., Zhang, Y.: RNN-Stega: linguistic steganography based on recurrent neural networks. IEEE Trans. Inf. Forensics Secur. 14(5), 1280–1295 (2018)
Yang, Z., Hu, Y., Huang, Y., Zhang, Y.: Behavioral security in covert communication systems. arXiv preprint arXiv:1910.09759 (2019)
Yang, Z., Huang, Y., Zhang, Y.: A fast and efficient text steganalysis method. IEEE Sig. Process. Lett. 26(4), 627–631 (2019)
Yang, Z., Wang, K., Li, J., Huang, Y., Zhang, Y.: TS-RNN: text steganalysis based on recurrent neural networks. IEEE Sig. Process. Lett. 26(12), 1743–1747 (2019). https://doi.org/10.1109/LSP.2019.2920452
Yang, Z., Zhang, S., Hu, Y., Hu, Z., Huang, Y.: VAE-Stega: linguistic steganography based on variational auto-encoder. IEEE Trans. Inf. Forensics Secur. 16, 880–895 (2020)
Zhang, X., Peng, F., Long, M.: Robust coverless image steganography based on DCT and LDA topic classification. IEEE Trans. Multimed. 20(12), 3223–3238 (2018)
Zhang, Y., Ye, D., Gan, J., Li, Z., Cheng, Q.: An image steganography algorithm based on quantization index modulation resisting scaling attacks and statistical detection. Comput. Mater. Continua 56(1), 151–167 (2018)
Zheng, S., Wang, L., Ling, B., Hu, D.: Coverless information hiding based on robust image hashing. In: Huang, D.-S., Hussain, A., Han, K., Gromiha, M.M. (eds.) ICIC 2017. LNCS (LNAI), vol. 10363, pp. 536–547. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63315-2_47
Zhou, Z., Mu, Y., Wu, Q.J.: Coverless image steganography using partial-duplicate image retrieval. Soft Comput. 23(13), 4927–4938 (2019). https://doi.org/10.1007/s00500-018-3151-8
Zhou, Z., Sun, H., Harit, R., Chen, X., Sun, X.: Coverless image steganography without embedding. In: Huang, Z., Sun, X., Luo, J., Wang, J. (eds.) ICCCS 2015. LNCS, vol. 9483, pp. 123–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27051-7_11
Zhou, Z., Wu, Q.J., Yang, C.N., Sun, X., Pan, Z.: Coverless image steganography using histograms of oriented gradients-based hashing algorithm. J. Internet Technol. 18(5), 1177–1184 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, Y., Yang, Z., Cao, H., Huang, Y. (2021). Multi-modal Steganography Based on Semantic Relevancy. In: Zhao, X., Shi, YQ., Piva, A., Kim, H.J. (eds) Digital Forensics and Watermarking. IWDW 2020. Lecture Notes in Computer Science(), vol 12617. Springer, Cham. https://doi.org/10.1007/978-3-030-69449-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-69449-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69448-7
Online ISBN: 978-3-030-69449-4
eBook Packages: Computer ScienceComputer Science (R0)