Skip to main content

i-Walk Intelligent Assessment System: Activity, Mobility, Intention, Communication

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12538))

Included in the following conference series:

  • 3065 Accesses

Abstract

We present the i-Walk system, a novel framework for intelligent mobility assistance applications. The proposed system is capable of automatically understanding human activity, assessing mobility and rehabilitation progress, recognizing human intentions and communicating with the patients by giving meaningful feedback. To this end, multiple sensors, i.e. cameras, microphones, lasers, provide multimodal data in order to allow for user monitoring, while state-of-the-art and beyond algorithms have been developed and integrated into the system to enable recognition, interaction and assessment. More specifically, i-Walk performs in real-time and consists of four main sub-modules that interact automatically to provide speech understanding, activity recognition, mobility analysis and multimodal communication for seamless HRI. The i-Walk assessment system is evaluated on a database of healthy subjects and patients, who participated in carefully designed experimental scenarios that cover essential needs of rehabilitation. The presented results highlight the efficacy of the proposed framework to endow personal assistants with intelligence.

G. Chalvatzaki, P. Koutras, A. Tsiami—Equal Contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DIAPLASIS Rehabilitation Center. https://www.diaplasis.eu/

  2. Google cloud speech-to-text. https://cloud.google.com/speech-to-text/

  3. RASA. http://rasa.com

  4. RASA. http://github.com/RasaHQ

  5. Robot Operating System (ROS). http://www.ros.org/about-ros/

  6. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: CVPR (2014)

    Google Scholar 

  7. Bocklisch, T., Faulkner, J., Pawlowski, N., Nichol, A.: Rasa: open source language understanding and dialogue management. In: NIPS (2017)

    Google Scholar 

  8. Cao, Z., Simon, T., Wei, S., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: CVPR (2017)

    Google Scholar 

  9. Chalvatzaki, G., Koutras, P., Hadfield, J., Papageorgiou, X.S., Tzafestas, C.S., Maragos, P.: LSTM-based network for human gait stability prediction in an intelligent robotic rollator. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4225–4232. IEEE (2019)

    Google Scholar 

  10. Chalvatzaki, G., Papageorgiou, X.S., Maragos, P., Tzafestas, C.S.: User-adaptive human-robot formation control for an intelligent robotic walker using augmented human state estimation and pathological gait characterization. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6016–6022. IEEE (2018)

    Google Scholar 

  11. Chalvatzaki, G., Papageorgiou, X.S., Maragos, P., Tzafestas, C.S.: Learn to adapt to human walking: a model-based reinforcement learning approach for a robotic assistant rollator. IEEE Rob. Autom. Lett. 4(4), 3774–3781 (2019)

    Article  Google Scholar 

  12. Chalvatzaki, G., Papageorgiou, X.S., Tzafestas, C.S., Maragos, P.: Augmented human state estimation using interacting multiple model particle filters with probabilistic data association. IEEE Rob. Autom. Lett. 3(3), 1872–1879 (2018)

    Article  Google Scholar 

  13. Chang, M., Mou, W., Liao, C., Fu, L.: Design and implementation of an active robotic walker for Parkinson’s patients. In: Proceedings of SICE, pp. 2068–2073 (2012)

    Google Scholar 

  14. Chen, Y., Tian, Y., He, M.: Monocular human pose estimation: a survey of deep learning-based methods. Comput. Vis. Image Underst. 192, 102897 (2020)

    Article  Google Scholar 

  15. Deriu, J., et al.: Survey on evaluation methods for dialogue systems. Artif. Intell. Rev. 1–56 (2020). https://doi.org/10.1007/s10462-020-09866-x

  16. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: CVPR (2015)

    Google Scholar 

  17. Dubowsky, S., et al.: PAMM-A robotic aid to the elderly for mobility assistance and monitoring: a“ helping-hand” for the elderly. In: ICRA (2000)

    Google Scholar 

  18. Efthymiou, N., Koutras, P., Filntisis, P.P., Potamianos, G., Maragos, P.: Multi-view fusion for action recognition in child-robot interaction. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 455–459. IEEE (2018)

    Google Scholar 

  19. Frizera-Neto, A., Ceres, R., Rocon, E., Pons, J.: Empowering and assisting natural human mobility: the Simbiosis walker. Int. J. Adv. Rob. Syst. 8(3), 29 (2011)

    Article  Google Scholar 

  20. Guler, A., et al.: Human joint angle estimation and gesture recognition for assistive robotic vision. In: ECCV (2016)

    Google Scholar 

  21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  22. Jenkins, S., Draper, H.: Care, monitoring, and companionship: views on care robots from older people and their carers. Int. J. Soc. Rob. 7(5), 673–683 (2015)

    Article  Google Scholar 

  23. Kulyukin, V., Kutiyanawala, A., LoPresti, E., Matthews, J., Simpson, R.: iWalker: toward a rollator-mounted wayfinding system for the elderly. In: IEEE International Conference on RFID (2008)

    Google Scholar 

  24. Leo, M., Furnari, A., Medioni, G.G., Trivedi, M., Farinella, G.M.: Deep learning for assistive computer vision. In: ECCV (2018)

    Google Scholar 

  25. Lin, T., et al.: Microsoft COCO: common objects in context. In: ECCV (2014)

    Google Scholar 

  26. Liu, J., Wang, G., Hu, P., Duan, L., Kot, A.: Global context-aware attention LSTM networks for 3D action recognition. In: CVPR (2017)

    Google Scholar 

  27. Morris, A., et al.: A robotic walker that provides guidance. In: ICRA (2003)

    Google Scholar 

  28. Muro-De-La-Herran, A., Garcia-Zapirain, B., Mendez-Zorrilla, A.: Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14(2), 3362–3394 (2014)

    Article  Google Scholar 

  29. Papageorgiou, X.S., Chalvatzaki, G., Dometios, A.C., Tzafestas, C.S., Maragos, P.: Intelligent assistive robotic systems for the elderly: two real-life use cases. In: Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments, pp. 360–365 (2017)

    Google Scholar 

  30. Papageorgiou, X.S., et al.: Advances in intelligent mobility assistance robot integrating multimodal sensory processing. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2014. LNCS, vol. 8515, pp. 692–703. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07446-7_66

    Chapter  Google Scholar 

  31. Paulo, J., Peixoto, P., Nunes, U.: ISR-AIWALKER: robotic walker for intuitive and safe mobility assistance and gait analysis. IEEE Trans. Hum. Mach. Syst. 47(6), 1110–1122 (2017)

    Article  Google Scholar 

  32. Perry, J.: Gait Analysis: Normal and Pathological Function. Slack Incorporated (1992)

    Google Scholar 

  33. Piyathilaka, L., Kodagoda, S.: Human activity recognition for domestic robots. In: Field and Service Robotics, pp. 395–408 (2015)

    Google Scholar 

  34. Rezazadegan, F., Shirazi, S., Upcrofit, B., Milford, M.: Action recognition: from static datasets to moving robots. In: ICRA (2017)

    Google Scholar 

  35. Rodomagoulakis, I., et al.: Multimodal human action recognition in assistive human-robot interaction. In: ICASSP (2016)

    Google Scholar 

  36. Rodriguez-Losada, D., Matia, F., Jimenez, A., Galan, R., Lacey, G.: Implementing map based navigation in guido, the robotic SmartWalker. In: ICRA (2005)

    Google Scholar 

  37. Roitberg, A., Perzylo, A., Somani, N., Giuliani, M., Rickert, M., Knoll, A.: Human activity recognition in the context of industrial human-robot interaction. In: Signal and Information Processing Association Annual Summit and Conference (2014)

    Google Scholar 

  38. Shahroudy, A., Liu, J., Ng, T., Wang, G.: NTU RGB+ D: a large scale dataset for 3D human activity analysis. In: CVPR (2016)

    Google Scholar 

  39. Sharkey, A., Sharkey, N.: Children, the elderly, and interactive robots. IEEE Robot. Autom. Mag. 18(1), 32–38 (2011)

    Article  MathSciNet  Google Scholar 

  40. Song, S., Lan, C., Xing, J., Zeng, W., Liu, J.: An end-to-end spatio-temporal attention model for human action recognition from skeleton data. In: AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  41. Stavropoulos, G., Giakoumis, D., Moustakas, K., Tzovaras, D.: Automatic action recognition for assistive robots to support mci patients at home. In: PETRA (2017)

    Google Scholar 

  42. Tinetti, M., Williams, T., Mayewski, R.: Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 80(3), 429–434 (1986)

    Article  Google Scholar 

  43. Tsiami, A., Filntisis, P.P., Efthymiou, N., Koutras, P., Potamianos, G., Maragos, P.: Far-field audio-visual scene perception of multi-party human-robot interaction for children and adults. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6568–6572. IEEE (2018)

    Google Scholar 

  44. Tsiami, A., Koutras, P., Efthymiou, N., Filntisis, P.P., Potamianos, G., Maragos, P.: Multi3: multi-sensory perception system for multi-modal child interaction with multiple robots. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–8. IEEE (2018)

    Google Scholar 

  45. Veeriah, V., Zhuang, N., Qi, G.: Differential recurrent neural networks for action recognition. In: ICCV (2015)

    Google Scholar 

  46. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3D skeletons as points in a lie group. In: CVPR (2014)

    Google Scholar 

  47. Vrigkas, M., Nikou, C., Kakadiaris, I.A.: A review of human activity recognition methods. Front. Rob. AI 2, 28 (2015)

    Google Scholar 

  48. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Learning actionlet ensemble for 3D human action recognition. PAMI 36(5), 914–927 (2013)

    Article  Google Scholar 

  49. Wang, P., Yuan, C., Hu, W., Li, B., Zhang, Y.: Graph based skeleton motion representation and similarity measurement for action recognition. In: ECCV (2016)

    Google Scholar 

  50. Zanfir, M., Leordeanu, M., Sminchisescu, C.: The moving pose: an efficient 3D kinematics descriptor for low-latency action recognition and detection. In: ICCV (2013)

    Google Scholar 

  51. Zhu, W., et al.: Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In: AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  52. Zimmermann, C., Welschehold, T., Dornhege, C., Burgard, W., Brox, T.: 3D human pose estimation in RGBD images for robotic task learning. In: ICRA (2018)

    Google Scholar 

Download references

Acknowledgment

This research has been co-financed by the European Union and Greek national funds (project code:T1EDK-01248, acronym: i-Walk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Koutras .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 37206 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chalvatzaki, G., Koutras, P., Tsiami, A., Tzafestas, C.S., Maragos, P. (2020). i-Walk Intelligent Assessment System: Activity, Mobility, Intention, Communication. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12538. Springer, Cham. https://doi.org/10.1007/978-3-030-66823-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66823-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66822-8

  • Online ISBN: 978-3-030-66823-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics