Skip to main content

Stacked BCDU-Net with Semantic CMR Synthesis: Application to Myocardial Pathology Segmentation Challenge

  • Conference paper
  • First Online:
Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images (MyoPS 2020)

Abstract

Accurate segmentation of pathological tissue, such as scar tissue and edema, from cardiac magnetic resonance images (CMR) is fundamental to the assessment of the severity of myocardial infarction and myocardial viability. There are many accurate solutions for automatic segmentation of cardiac structures from CMR. On the contrary, a solution has not as yet been found for the automatic segmentation of myocardial pathological regions due to their challenging nature. As part of the Myocardial Pathology Segmentation combining multi-sequence CMR (MyoPS) challenge, we propose a fully automatic pipeline for segmenting pathological tissue using registered multi-sequence CMR images sequences (LGE, bSSFP and T2). The proposed approach involves a two-staged process. First, in order to reduce task complexity, a two-stacked BCDU-net is proposed to a) detect a small ROI based on accurate myocardium segmentation and b) perform inside-ROI multi-modal pathological region segmentation. Second, in order to regularize the proposed stacked architecture and deal with the under-represented data problem, we propose a synthetic data augmentation pipeline that generates anatomically meaningful samples. The outputs of the proposed stacked BCDU-NET with semantic CMR synthesis are post-processed based on anatomical constrains to refine output segmentation masks. Results from 25 different patients demonstrate that the proposed model improves 1-stage equivalent architectures and benefits from the addition of synthetic anatomically meaningful samples. A final ensemble of 15 trained models show a challenge Dice test score of 0.665 ± 0.143 and 0.698 ± 0.128 for scar and scar + edema, respectively.

C. Martín-Isla and M. Asadi-Aghbolaghi—contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Bi-directional ConvLSTM U-Net with densley connected convolutions. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). IEEE, October 2019. https://doi.org/10.1109/iccvw.2019.00052

  2. Baumgartner, C.F., Koch, L.M., Pollefeys, M., Konukoglu, E.: An exploration of 2D and 3D deep learning techniques for cardiac MR image segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 111–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_12

    Chapter  Google Scholar 

  3. Campello, V.M., Martín-Isla, C., Izquierdo, C., Petersen, S.E., Ballester, M.A.G., Lekadir, K.: Combining multi-sequence and synthetic images for improved segmentation of late gadolinium enhancement cardiac MRI. In: Pop, M., et al. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 290–299. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_31

    Chapter  Google Scholar 

  4. Flett, A.S., et al.: Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc. Imaging 4(2), 150–156 (2011). https://doi.org/10.1016/j.jcmg.2010.11.015

    Article  Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  6. Klem, I., et al.: Sources of variability in quantification of cardiovascular magnetic resonance infarct size - reproducibility among three core laboratories. J. Cardiovasc. Magn. Reson. 19(1) (2017). https://doi.org/10.1186/s12968-017-0378-y

  7. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2019. https://doi.org/10.1109/cvpr.2019.00244

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. Song, H., Wang, W., Zhao, S., Shen, J., Lam, K.-M.: Pyramid dilated deeper ConvLSTM for video salient object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 744–760. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_44

    Chapter  Google Scholar 

  10. Tao, Q., Piers, S.R., Lamb, H.J., van der Geest, R.J.: Automated left ventricle segmentation in late gadolinium-enhanced MRI for objective myocardial scar assessment. J. Magn. Reson. Imaging 42(2), 390–399 (2014). https://doi.org/10.1002/jmri.24804

    Article  Google Scholar 

  11. Thiele, H., Kappl, M.J., Conradi, S., Niebauer, J., Hambrecht, R., Schuler, G.: Reproducibility of chronic and acute infarct size measurement by delayed enhancement-magnetic resonance imaging. J. Am. Coll. Cardiol. 47(8), 1641–1645 (2006). https://doi.org/10.1016/j.jacc.2005.11.065

    Article  Google Scholar 

  12. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, June 2018. https://doi.org/10.1109/cvpr.2018.00917

  13. Zhuang, X.: Multivariate mixture model for cardiac segmentation from multi-sequence MRI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 581–588. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_67

    Chapter  Google Scholar 

  14. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946 (2019). https://doi.org/10.1109/tpami.2018.2869576

    Article  Google Scholar 

Download references

Acknowledgement

This work was partly funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 825903 (euCanSHare project). This work has been partially supported by the Spanish project PID2019-105093GB-I00 (MINECO/FEDER, UE) and CERCA Programme/Generalitat de Catalunya.). This work is partially supported by ICREA under the ICREA Academia programme. KL is supported by the Ramon y Cajal Program of the Spanish Ministry of Economy and Competitiveness under grant no. RYC-2015-17183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Martín-Isla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martín-Isla, C., Asadi-Aghbolaghi, M., Gkontra, P., Campello, V.M., Escalera, S., Lekadir, K. (2020). Stacked BCDU-Net with Semantic CMR Synthesis: Application to Myocardial Pathology Segmentation Challenge. In: Zhuang, X., Li, L. (eds) Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images. MyoPS 2020. Lecture Notes in Computer Science(), vol 12554. Springer, Cham. https://doi.org/10.1007/978-3-030-65651-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65651-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65650-8

  • Online ISBN: 978-3-030-65651-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics