Skip to main content

Weakly Supervised Retinal Detachment Segmentation Using Deep Feature Propagation Learning in SD-OCT Images

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12069))

Included in the following conference series:

  • 2698 Accesses

Abstract

Most automated segmentation approaches for quantitative assessment of sub-retinal fluid regions rely heavily on retinal anatomy knowledge (e.g. layer segmentation) and pixel-level annotation, which requires excessive manual intervention and huge learning costs. In this paper, we propose a weakly supervised learning method for the quantitative analysis of lesion regions in spectral domain optical coherence tomography (SD-OCT) images. Specifically, we first obtain more accurate positioning through improved class activation mapping; second, in the feature propagation learning network, the multi-scale features learned by the slice-level classification are employed to expand its activation area and generate soft labels; finally, we use generated soft labels to train a fully supervised network for more robust results. The proposed method is evaluated on subjects from a dataset with 23 volumes for cross-validation experiments. The experimental results demonstrate that the proposed method can achieve encouraging segmentation accuracy comparable to strong supervision methods only utilizing image-level labels.

This work was supported by the National Natural Science Foundation of China under Grant No. 61701192, 61671242, 61872419, 61873324.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bogunović, H., et al.: RETOUCH: the retinal oct fluid detection and segmentation benchmark and challenge. IEEE Trans. Med. Imaging 38(8), 1858–1874 (2019)

    Article  Google Scholar 

  2. Dansingani, K.K., et al.: Annular lesions and catenary forms in chronic central serous chorioretinopathy. Am. J. Ophthalmol. 166, 60–67 (2016)

    Article  Google Scholar 

  3. Fernandez, D.C.: Delineating fluid-filled region boundaries in optical coherence tomography images of the retina. IEEE Trans. Med. Imaging 24(8), 929–945 (2005)

    Article  Google Scholar 

  4. Gao, K., et al.: Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in sd-oct images. Comput. Methods Programs Biomed. 176, 69–80 (2019)

    Article  Google Scholar 

  5. Lang, A., et al.: Automatic segmentation of microcystic macular edema in OCT. Biomed. Opt. Express 6(1), 155–169 (2015)

    Article  Google Scholar 

  6. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  7. Novosel, J., Wang, Z., de Jong, H., Van Velthoven, M., Vermeer, K.A., van Vliet, L.J.: Locally-adaptive loosely-coupled level sets for retinal layer and fluid segmentation in subjects with central serous retinopathy. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 702–705. IEEE (2016)

    Google Scholar 

  8. Quellec, G., Lee, K., Dolejsi, M., Garvin, M.K., Abramoff, M.D., Sonka, M.: Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula. IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010)

    Article  Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Roy, A.G., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8(8), 3627–3642 (2017)

    Article  Google Scholar 

  11. Schaap, M., et al.: Coronary lumen segmentation using graph cuts and robust kernel regression. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 528–539. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02498-6_44

    Chapter  Google Scholar 

  12. Venhuizen, F.G., et al.: Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomed. Opt. Express 9(4), 1545–1569 (2018)

    Article  Google Scholar 

  13. Wang, J., et al.: Automated volumetric segmentation of retinal fluid on optical coherence tomography. Biomed. Opt. Express 7(4), 1577–1589 (2016)

    Article  Google Scholar 

  14. Wang, T., et al.: Label propagation and higher-order constraint-based segmentation of fluid-associated regions in retinal SD-OCT images. Inf. Sci. 358, 92–111 (2016)

    Article  Google Scholar 

  15. Wu, M., et al.: Automatic subretinal fluid segmentation of retinal SD-OCT images with neurosensory retinal detachment guided by enface fundus imaging. IEEE Trans. Biomed. Eng. 65(1), 87–95 (2017)

    Article  Google Scholar 

  16. Wu, M., et al.: Three-dimensional continuous max flow optimization-based serous retinal detachment segmentation in SD-OCT for central serous chorioretinopathy. Biomed. Opt. Express 8(9), 4257–4274 (2017)

    Article  Google Scholar 

  17. Zheng, Y., Sahni, J., Campa, C., Stangos, A.N., Raj, A., Harding, S.P.: Computerized assessment of intraretinal and subretinal fluid regions in spectral-domain optical coherence tomography images of the retina. Am. J. Ophthalmol. 155(2), 277–286 (2013)

    Article  Google Scholar 

  18. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sijie Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, T., Niu, S., Dong, J., Chen, Y. (2020). Weakly Supervised Retinal Detachment Segmentation Using Deep Feature Propagation Learning in SD-OCT Images. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science(), vol 12069. Springer, Cham. https://doi.org/10.1007/978-3-030-63419-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63419-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63418-6

  • Online ISBN: 978-3-030-63419-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics