Abstract
Most automated segmentation approaches for quantitative assessment of sub-retinal fluid regions rely heavily on retinal anatomy knowledge (e.g. layer segmentation) and pixel-level annotation, which requires excessive manual intervention and huge learning costs. In this paper, we propose a weakly supervised learning method for the quantitative analysis of lesion regions in spectral domain optical coherence tomography (SD-OCT) images. Specifically, we first obtain more accurate positioning through improved class activation mapping; second, in the feature propagation learning network, the multi-scale features learned by the slice-level classification are employed to expand its activation area and generate soft labels; finally, we use generated soft labels to train a fully supervised network for more robust results. The proposed method is evaluated on subjects from a dataset with 23 volumes for cross-validation experiments. The experimental results demonstrate that the proposed method can achieve encouraging segmentation accuracy comparable to strong supervision methods only utilizing image-level labels.
This work was supported by the National Natural Science Foundation of China under Grant No. 61701192, 61671242, 61872419, 61873324.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bogunović, H., et al.: RETOUCH: the retinal oct fluid detection and segmentation benchmark and challenge. IEEE Trans. Med. Imaging 38(8), 1858–1874 (2019)
Dansingani, K.K., et al.: Annular lesions and catenary forms in chronic central serous chorioretinopathy. Am. J. Ophthalmol. 166, 60–67 (2016)
Fernandez, D.C.: Delineating fluid-filled region boundaries in optical coherence tomography images of the retina. IEEE Trans. Med. Imaging 24(8), 929–945 (2005)
Gao, K., et al.: Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in sd-oct images. Comput. Methods Programs Biomed. 176, 69–80 (2019)
Lang, A., et al.: Automatic segmentation of microcystic macular edema in OCT. Biomed. Opt. Express 6(1), 155–169 (2015)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Novosel, J., Wang, Z., de Jong, H., Van Velthoven, M., Vermeer, K.A., van Vliet, L.J.: Locally-adaptive loosely-coupled level sets for retinal layer and fluid segmentation in subjects with central serous retinopathy. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 702–705. IEEE (2016)
Quellec, G., Lee, K., Dolejsi, M., Garvin, M.K., Abramoff, M.D., Sonka, M.: Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula. IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Roy, A.G., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8(8), 3627–3642 (2017)
Schaap, M., et al.: Coronary lumen segmentation using graph cuts and robust kernel regression. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 528–539. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02498-6_44
Venhuizen, F.G., et al.: Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomed. Opt. Express 9(4), 1545–1569 (2018)
Wang, J., et al.: Automated volumetric segmentation of retinal fluid on optical coherence tomography. Biomed. Opt. Express 7(4), 1577–1589 (2016)
Wang, T., et al.: Label propagation and higher-order constraint-based segmentation of fluid-associated regions in retinal SD-OCT images. Inf. Sci. 358, 92–111 (2016)
Wu, M., et al.: Automatic subretinal fluid segmentation of retinal SD-OCT images with neurosensory retinal detachment guided by enface fundus imaging. IEEE Trans. Biomed. Eng. 65(1), 87–95 (2017)
Wu, M., et al.: Three-dimensional continuous max flow optimization-based serous retinal detachment segmentation in SD-OCT for central serous chorioretinopathy. Biomed. Opt. Express 8(9), 4257–4274 (2017)
Zheng, Y., Sahni, J., Campa, C., Stangos, A.N., Raj, A., Harding, S.P.: Computerized assessment of intraretinal and subretinal fluid regions in spectral-domain optical coherence tomography images of the retina. Am. J. Ophthalmol. 155(2), 277–286 (2013)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, T., Niu, S., Dong, J., Chen, Y. (2020). Weakly Supervised Retinal Detachment Segmentation Using Deep Feature Propagation Learning in SD-OCT Images. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science(), vol 12069. Springer, Cham. https://doi.org/10.1007/978-3-030-63419-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-63419-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63418-6
Online ISBN: 978-3-030-63419-3
eBook Packages: Computer ScienceComputer Science (R0)